
UNCLASSIFIED

MODELING AND SIMULATION

TECHNIQUES FOR LARGE-SCALE

COMMUNICATIONS MODELING

FINAL REPORT

OCTOBER 31, 1997

Sponsored by:
US Army Communications and Electronic Systems Command

Fort Monmouth, NJ 07703

Delivered in accordance with Contract Data
Requirements List data item B001

Contract DAAB07-97-C-D256

Contractor:
Steve Webb

809 Grayling Bay
Costa Mesa, CA 92626

714/957-1916

UNCLASSIFIED 20010423 056

ABSTRACT

Modeling and simulation are together widely used throughout the Army,
and vast amounts of computer time are used in running them. Of even more
concern, however, is the quantity of analyst time involved in setting up and
analyzing the results of the runs. Contributions that enhance the use of analyst
time are therefore particularly welcomed. One aspect of efficient use is the
confidence that users have in the ability of the simulation to represent the real
world. To this end, an ongoing model validation effort was supported by
developing and providing computer routines to calculate metrics that measure
the degree to which simulation data match test data. Tests of random number
generators were also developed and applied to CECOM models. Many
techniques for speeding up simulation models rely on approximations that are
adequate for the intended use of the models. In the case of engineering
simulations, however, it is often desirable to maintain very high fidelity, even
though it be superfluous for the current use, because future uses of the model
may require it. For simulations that model random effects, a technique was
found that is generally applicable, is easily implemented, does not compromise
fidelity, and provides significant savings for making comparative studies with
simulation models. Synchronization of the random number strings allows each
entity modeled to have its own set of random draws for any combination of
input parameters. If synchronization is in place, then statistical experiment
design can also be used to provide information on the sensitivity of the output
to input parameters. The report concludes with recommendations and an
implementation plan.

FOREWORD

This is the final report covering research work accomplished under
contract DAAB07-97-C-D256, entitled Modeling and Simulation Techniques for
Large-Scale Communications Modeling, between the US Army Communications
and Electronic Systems Command, Fort Monmouth, NJ, and Steve Webb, Costa
Mesa, California, conducting business as a sole proprietor. This contract was
awarded as a Phase I contract under the Department of Defense Small Business
Innovation Research Program solicitation 96.2, Item A96-159. The period of
performance was December 16, 1996 to September 30, 1997. The technical
work was conducted by the contractor, Steve Webb, who wrote this report.
Illustrations were done by Richard Escarcega. Technical monitor for CECOM
was Phil Ciorciari of the RDEC Modeling and Simulation Branch, office symbol
AMSEL-RD-C2-ST-S, telephone 732/427-2028. The assistance provided by
John Wray of the Army Materiel Systems Analysis Activity, by William Ottly
of the CECOM Modeling and Simulation Branch, and by Joseph Elmo of
Atlantic Consulting Services, Inc. are also acknowledged. This report does not
contain any potentially patentable subject matter.

in

TABLE OF CONTENTS

0. EXECUTIVE SUMMARY 2

1. INTRODUCTION 5

2. CECOM LARGE-SCALE COMMUNICATIONS MODELS 10

3. SIMULATION MODEL VALIDATION 12

4. RANDOM NUMBER GENERATION 18

5. RANDOM NUMBER SYNCHRONIZATION 24

6. EXPERIMENT DESIGN FOR SIMULATION STUDIES 33

7. OTHER GENERAL APPROACHES FOR INCREASED EFFECTIVENESS 40

8. RECOMMENDATIONS AND IMPLEMENTATION PLAN 42

APPENDIX A - VALIDATION METRIC ROUTINES 44

APPENDIX B - RANDOM NUMBER GENERATOR TESTS 49

APPENDIX C - RESULTS OF RANDOM NUMBER GENERATOR TESTS 66

APPENDIX D - RANDOM NUMBER SYNCHRONIZATION IN OSPREY 75

APPENDIX E - EXPERIMENT DESIGNS FOR SIMULATION STUDIES 78

APPENDIX F - EXPERIMENT RESULTS 82

APPENDIX G - NETWORK MODEL RESULTS 84

REFERENCES 87

IV

0. EXECUTIVE SUMMARY

Criticality of Modeling and Simulation Effort

Modeling and simulation are together a critical technology to the Army. Thousands of
models have been written that are used for many purposes throughout almost all Army
organizations.

Simulations are of many types. They are used to predict the effectiveness of weapon
systems of the future as well as those in the field. They provide operational support in mission
planning. The class of Distributed Interactive Simulations is used to mount war games that may
involve many players simultaneously.

Of primary concern in this study is the class of engineering simulations as applied to
digital communications systems. Such communication systems may be quite extensive and tend
to contain a great many copies of elements that are essentially the same, such as radio sets. As
engineering simulations, they are intended to contain faithful replicas of the physical aspects of
the system. They often are built early in system design and are maintained to follow the changes
made to the system as it is developed and fielded.

Since simulations run on computers, it would seem that minimizing computer time would
be critical in reducing the vast total expense of the overall Army modeling and simulation effort.
While this was true in the days of large centralized main-frame computers, it is relatively less
important now that simulations are typically run on work stations under the control of the
simulation user. Now the critical cost element is the analyst time involved in developing the
simulation model, running it, verifying that the run was properly made, analyzing the output, and
drawing conclusions. Computer time is generally only a marginal contributor.

Rather than considering the cost of an individual simulation run, it is more important to
view it in the overall context of an analysis effort. If the effort can be structured more
efficiently, so that the same conclusions can be reached in a shorter time or with a greater degree
of confidence, then a real benefit is achieved.

Corresponding to this view, the scope of this study was made broad. While it included
ways of decreasing the computer time of a simulation run, it also covered ways of using the
simulation model and analyst together more efficiently. One way is to increase the confidence
that others have in the validity of the simulation to aid the decision makers. This touches on the
field of Verification, Validation, and Accreditation. The Army Materiel Systems Analysis
Activity (AMSAA) was in the process of working with CECOM on VV&A of an important
communications model. This provided an opportunity to cooperate in the area of techniques for
assessing validation.

CECOM SYSTEM PERFORMANCE MODEL

Command
and

Control
Component

Model

t

Protocol
Component

Model»

Mission
Threads

Communication
; Component
|;;i|;iÖiw|äsliii?

i'</#t'ilililMiM&Ü!ii

Validation Support for a
CECOM Model

An important
engineering simulation model
is the CECOM System
Performance Model (SPM).
Nodes representing military
operational facilities are
linked by tactical
communications networks
using digital radios. Input
message traffic may be
scripted or generated

statistically. Important parts of the model are the command and control functions, link protocols
the types of radios included, and the electromagnetic environment. The model can be used to
study message completion rates and delays as a function of system load.

Validation is best done by a comparison of simulation output with real test data from the
system being simulated. For this purpose an extensive set of development test data was available
from the Enhanced Position Location Reporting System (EPLRS) radio engineering development
etrort. The question arose as to the best way to compare the data sets.

A ,. JhC S!andard statistical technique for comparing two data sets is the test of hypothesis
A null hypothesis of no difference between the sets is tested. If enough evidence is available to
make the null hypothesis improbable, then the hypothesis is rejected; if there is not enough
evidence, then all the procedure provides is an "I don't know" answer.

An alternative procedure was previously developed by this contractor, which provides a
metric expressing how nearly the same are the two data sets. The quality of degree of sameness
rather than degree of difference, is the essence of validation. For the current effort, software
routines were developed using this approach and provided to AMSAA through CECOM to
support the data analysis for the validation.

Like many simulations, SPM models some natural effects as random processes, which are
mathematical abstractions that have been found useful for such purposes. The computer
implementations of the random processes use an internal random number generator to model the
outputs of these random processes. An examination of the SPM code shows on the order of 100
different calls to the random number generator. Such generators are really deterministic, but are
supposed to generate sequences of numbers that share many of the properties associated with a
truly random sequence. Unfortunately, some generators in use have been found to generate
sequences with characteristics that are clearly not random. As an adjunct to the VV&A effort
a set of 5 test programs was constructed and tested on existing generators, both good and bad'
Iney were then applied to the generator used in the SPM.

Synchronization of Random Number Draws

SYNCHRONIZATION PRINCIPLE
SIMULATION A

REP1 REP 2 REP 3

Simulations are often relied upon to make comparisons between different cases. These
might represent different parameter settings, environmental effects, or different ways of using the
system. The random number draws can introduce so much variability that the real effects of the
factors to be compared are masked.

The masking effect of random variation is an aspect of the real world that such models
simulate well. But unlike the real world, the "randomness" has an accessibility that can be
exploited to increase the precision of comparisons. If exactly the same random number sequence
is used on each side of the comparison, then much of the randomness is effectively cancelled out.
Complications arise, however, if the change in parameters from one case to the other causes one
or more extra draws to be made to the random sequence. The comparison will be tight before
the first extra draw and loose after it. An observed difference may then depend more on when
the extra draw was made than on the real difference introduced by the parameter change.

General techniques for ensuring that the random number draws remain synchronized were
studied and refined. The procedures are easy to implement. In the simplest form the draws are

made so that each replication
has the same starting point
(figure). Experiments were
performed on a simplified
communications model to
evaluate the effectiveness of
synchronization. It was
possible to compare the
sample sizes required with
and without synchronization
to obtain an equivalent
precision in a comparison of
simulation outputs. It was
found that for this model
synchronization provided
precision equivalent to an

increase in sample size by a factor ranging from 2 to over 100. The benefit is then seen to be
large if the effect of interest is small compared with experimental error.

Another technique for making comparisons using simulations is provided by the
introduction of statistical experiment design techniques. This has the promise of allowing large
numbers of comparisons to be made with efficient use of computer resources. Setting up,
running, and analyzing large numbers of simulation cases is time consuming for the analyst,
however. A system is envisioned to aid the analyst in carrying out the process. It would allow
a baseline simulation to be the center point for a detailed investigation of parameter effects.
Next, single-variable sensitivities would be determined, then the general effects of all the
parameters when several parameters are simultaneously varied. Test cases illustrating this
approach were developed.

RANDOM
NUMBER
STRING

REP1 REP 2 REP 3

SIMULATION B

Major Findings

1) Engineering simulations are difficult to speed up in general ways because good ways
of eliminating computation may often compromise model fidelity. Fidelity of an engineering
model should be maintained because the model may have different uses in the future for which
apparently superfluous fidelity is necessary (further discussion is on page 10).

2) Formal validation in which simulation results are compared with test results from the
system simulated is an important means of increasing confidence in simulation results. The
validation metrics developed have proven to be useful indications of the degree of similarity
between simulation and test (p 17).

3) The random number generation scheme used in the SPM is adequate for the wavs that
it is used in the model (p 22).

4) There is no provision in SPM to keep the random number draws synchronized.
Because there are many draws made throughout the model for many purposes, two cases with
different parameters would not be expected to use the same random numbers for the same
purposes. The safest thing to do is to make all runs with different starting seeds. SPM has a
provision for doing just that (p 18).

5) Synchronizing random numbers so that the same strings can be used for making
comparisons has a major benefit for comparative studies using a simulation model (p 31).

Major Recommendations

1) Synchronize the random number draws in SPM and other important models used for
comparative studies (p 32).

2) Until a communication model can be synchronized, make all runs using scripted
message input, rather than traffic statistically generated at the time the run is made. The scripted
input may be generated statistically offline before the simulation run, and saved in case any
comparative runs are to be made in the future (p 42).

3) Until it is synchronized, make all runs using different seeds. This is a normal mode
of operation in SPM using the low order bits of the system clock to provide the first seed (p 42).

cm, u4) T° supPort future execution time improvements, introduce timing instrumentation into
SPM by calling the system clock before and after major parts of the code are executed (p 42).

5) Consider improving the random number generator from the current adequate one to a
good one; GENK or GENH introduced later are candidates, subject to further testing (p 42).

6) Consider the introduction of a semi-automated system for generating, running and
analyzing statistical experiment designs to study system performance as a function of input
parameters (p 39).

1. INTRODUCTION

The Importance of Simulation in Defense

The subject of modeling and simulation has been identified by the DoD as one of twenty
technologies critical to ensuring the long-term superiority of weapon systems [Schuppe 1991].
It was categorized as an enabling technology that offers capability for advances in weapon
systems. It is widely used for analyses ranging from advanced planning to operational support.

Some simulation models are deterministic, always giving the same result for the same
input values. The majority of models, however, attempt to reflect the real-world variation that
we refer to as "random." One might argue that all variation could be explained by a sufficiently
detailed model. It will suffice to define random as a mathematical abstraction; a random variable
or process produces outputs that individually and jointly follow specified probability distributions
that reflect the variation seen empirically. The implementation in a simulation is usually
accomplished by using so-called pseudo random number generators. Typically the generator is
a small piece of computer code that from an initial seed generates a sequence of real numbers
between zero and one. Although the sequence is deterministic given the seed, the sequence is
intended to have many of the properties that a truly random sequence would have. These include

• Uniformity across the interval 0 to 1
• Apparent independence from one number to the next
• Long cycle length before the sequence repeats.

When a random number generator is used, in order to understand the behavior of the
model we need to run the model more. This may be done by simulating longer periods of time,
by looking at more than one sample, or by a combination. By running the simulation for a
number of independent replications (using a different string of random numbers each time) we
gain insight into how variable the responses of the system may be. By averaging results, we are
able to estimate with greater precision what the average response of the system will be. There
is a tendency in simulation studies to underestimate the number of replications needed to develop
a full understanding of the variability of the responses.

Often a model is used to make comparisons of results using different combinations of
values of the input parameters. For example, a gun model might vary muzzle velocity, bullet
mass, and shape. As a model is first used, the large effects are soon discovered and understood
and more interest centers on effects that are small compared with the random variability. Also
of interest are how different combinations of system inputs jointly affect the system outputs.
Both these desires may lead to making more simulation runs. Once again, the number of cases
run to gain a systematic understanding of how the system responds over all its possible input
conditions tends to be underestimated.

All in all, many models are in existence that are frequently used. Together they use a
vast amount of computer time. The need to understand variability better and to average out its
influence, and the need to understand the effects of changes in combinations of variables
contribute pressure to make even more simulation runs.

Types of Simulation Mnrfpk

Even if the scope of simulation models is restricted to the DoD, there are really many
different types, each with its own characteristics. There is no generally accepted categorization,
and many simulation models have characteristics of several basic types. Some of the more
important types for Army applications will be reviewed based on those given in a catalog of
about 525 models compiled by the Joint Staff [1992].

Many models are constructed to estimate the effectiveness of a weapon system They
range in complexity from simple models with a high degree of aggregation used in the early
planning phase or a system that might be developed sometime In the future. At the other

Zmi st" ,8 ^ ""'ff m°uelS f°r SyStemS UndCr deveI°P-nt. Models also range in scope
from m.ss.on level models such as Osprey [Webb et al 1987], which treats a complete negation

™M^O7ZZZ rl and, rep,acrent mi,itary sate,,ites in iow earth orbits> to time-stfP;:s models of the flight of a single round against a target.

bullet lhrmen
t
0l°f

giCal m°delS trCat SUCh thingS aS the Pr°Pag^ion medium of a signal or
bullet weather, interference, compatibility, physical terrain, and the like. They frequently appear
as parts of other models. Examples are TIREM [ECAC 1983], GT-sig, which S thermal
backgrounds, and MAPS, a CECOM model for electronic warfare studies. oTen nume"
integration is a key part of the computational load. numerical

descriottnl^tht^n011?1115 T^* ** ^^ md survivability- They contain detailed
tZ^T •!, ? g Jry °f thC target and weaP°n' treat Phenomenology of weapon
interac on with elements of the target, and often must consider multiple shotline effects as the
interaction proceeds. Again they may be used in other models. They can be comput ional

R^h UbonZf 1S Sn,UASH' 3 dbtailed P°int-bUrSt 1Cthality C°de devel°Ped "y BS Kesearch Laboratory for artillery against armored vehicles.

«>,l « ,^°delS f
built for traininS and education must respond in the manner and time scale of the

h s" i ni,aaSr V T^l" * ^ f"8 *' ^ accun<* * "0t aS imPortant » « interfac that s similar to the real human interface. An example is TACSIM, which produces realistic
intelligence reports (at the SCI level), but admittedly compromises sensor resoluln

mav . °,PeraUOnal SUPP°rt models are developed later as a system is deployed and used. They
my evolve from earlier system effectiveness models. They are used to check the effec s of

PTOLOGUE
1
'
0
"

8
, ', a rdnC SCenari°- Many eXamplCS °CCUr in the «elds oflogi i^ (PROLOGUE evaluates logistics aspects of operational planning at the theater level) and

communications (JTIDSC2 estimates the performance of a JTIDS network as decoyed) '

There is a great deal of current interest in distributed interactive simulations (DIS) for
support of training and exercise rehearsal. A simulation often involves many participant each
with their own computer and role to play. The simulation runs on each of the computers w" th
information exchanged between them by means of protocol data units. The volume and speed
of data exchange are issues that are much more critical than simulation computationalspeed
Examples are the Untethered Land Warrior [Sauerborn 1995] or Janus [Army 1986]

Possible Techniques for Accelerating Simulations

Since computer simulation is so prevalent, the amount of computer time used to produce
simulation results is enormous. Techniques for decreasing computer run time are therefore of
considerable interest. A reasonable step is to see if the numerical calculations done in a
simulation can be arranged more efficiently. This might work very well at first, but has
diminishing returns. Optimizing compilers have been around for a long time, and do a good job
in rearranging computations for best utilizing the capabilities of existing computers. Improving
them is difficult.

Another approach is to do the calculations faster, perhaps with a newer computer or an
advanced architecture that, for example, might allow parallel computation. New computers are
interesting, but costly to buy, install, integrate, learn, debug, and get running existing application
software.

An alternate approach is to look beyond the computational level and find a completely
different solution that gives equivalent answers. A perhaps apocryphal story concerns Gauss as
a young boy. To keep him occupied during math class, his teacher tasked him to add the
integers from 1 to 100. After apparently doodling for a minute or so, he came up with the
answer. He showed the astonished professor that by adding the first and last numbers, second
and next to last, etc, always getting the same result, he could reduce the problem to a single
multiplication.

An example from this writer's past arose in the late 1960's at McDonnell Douglas
Aerospace. A library of subroutines for missile guidance system analysis contained a subroutine
for solving simple linear equations that had been "optimized" by specializing to three dimensions
and simplifying data indexing. A numerical analysis specialist observed, however, that the
solution algorithm used was Cramer's rule (ratio of determinants). Use of Gaussian elimination
easily beat the "optimum" subroutine.

Another example arose when converting a system-level antisatellite simulation program
from large main-frame computers to run on a small personal computer. Although only a small
part of the code, the engagement planning function uses the large majority of the run time. A
simple prescreening test was added to the code to avoid even trying to compute an engagement
plan if the satellite track was beyond the maximum reach of the interceptor missile. This simple
technique reduced run times by a factor of eight.

Other standard approaches are to use variable step sizes in numerical integration
procedures, to perform detailed calculations offline and replace them in the simulation model by
either a table lookup or by an analytic approximation, or to aggregate low order results. In fact,
aggregation has been called the most pervasive type of approximation in simulations [Bratley
1983].

So rearranging the calculations, better numerical analysis, or prescreening are valid
approaches. However, there does not seem to be a general scheme for finding them. The
challenge is to do it in a way that does not degrade fidelity.

The Cost of Making a Simulation Run

Just a few years ago computer systems were built around large expensive main-frame
computers. Simulation runs were made in batch mode by sending a "job" to the mainframe often
using smaller computers to perform input and output to the faster mainframes. Costs of
acquiring, equipment leasing, maintaining, and operating the computer centers were recovered
by charging users fees based primarily on the amount of computer time used.

Now it is commonplace for simulations to be run on work stations that are purchased as
capital equipment and operated and maintained by the user. The cost of computer time has
become highly nonlinear. The following table makes a whimsical analysis of the benefit of
getting a simulation to run twice as fast.

From To Value Reason

1 sec Vi sec None Response is essentially instantaneous anyway

16 sec 8 sec Appreciable A computer pause while the user is ready to make
the next input is very annoying

3 min IVi min Little Either delay is long enough to get a cup of coffee
or go to the restroom

90 min 45 min Large Analysts put in long runs just before they go to
meetings; if runs are shorter, then there will be
pressure to get the meeting over with

20 hr 10 hr Small In either case there is one turn around per day

4 days 2 days Very great Just one turn around in a work week causes
everyone to forget what the project is about; two or
even three makes for good discussion in the weekly
report.

Although this analysis lacks the rigor for serious consideration by a human factors journal,
it does illustrate that the real benefit of a time saving is in what the human operator can do with
it. It almost goes without saying that time saving is much more important on a model for which
individual runs are long, even if the total time involved is smaller than for other models that are
run much more frequently.

Often more important than computer time is the time taken by an analyst to set up, verify,
and analyze the results of the runs. This suggests that a broader look at run effectiveness is
preferred to a limited treatment of just computer run time.

Organization of This Report

Section 2 is a short review of large-scale communications models in terms of their
distinguishing characteristics and use at CECOM. An introduction to the model selected for
special emphasis, called SPM, is given.

If its users have confidence in a simulation model, then there will be a general perception
that time used in running and working with the model will be well spent. Validation is an
important contributor to such confidence. An ongoing validation effort of the SPM was
supported as part of the current study. A new statistical approach to comparing simulated and
real data was reduced to computer routines that were then used for the validation. What was
done is discussed in Section 3. Mathematical details are discussed in Appendix A.

Many simulations use random numbers, and most of these rely on routines supplied with
the computer system. Historically, some such routines have been disappointing in their emulation
of theoretical random properties. Tests for random number generators were developed,
themselves tested on 14 generators of both good and bad quality, and then used to assess the
generator in SPM. A general description of this work and its application to the SPM generator
are given in Section 4. Appendix B gives details of the tests, generators, and starting seeds used.
Fortran listings of the tests and generators are also included. A more comprehensive collection
of testing results is given in Appendix C.

The work on synchronization of random number generators is given in Section 5. This
includes illustrations of what happens when synchronization is lost, a simple communication
simulation built to test synchronization schemes, and an assessment of the gains obtained using
it for comparative studies. The section contains a recipe for implementing it and a refinement
as used in a large simulation is given in Appendix D.

The topic of statistical experiment design as it can be applied to simulation studies is
discussed in Section 6. Included in the section is a detailed illustration of its use. Issues
involved in implementing an automated approach are discussed. A catalog of actual designs
useful for simulation studies is given as Appendix E. Details of the example application are in
Appendix F.

Section 7 reviews other general techniques for speeding up simulations that were looked
at. Most general techniques involve approximations that might degrade fidelity if not used
carefully. Because of the importance of high fidelity for engineering simulations, these
techniques were de-emphasized in this study. Some work was done on a model for studying a
technique called staged aggregation. Results, which were largely negative, are presented in
Appendix G.

Section 8 presents conclusions and discusses how improvements might be implemented.

References are collected at the end of the report.

2. CECOM LARGE-SCALE COMMUNICATIONS MODELS

General Features

As the Army moves into the 21st century, increasing emphasis is being placed on the
power of information. CECOM supports this evolution towards Force XXI by developing digital
information systems designed to promote rapid and accurate decision making. Modeling and
simulation are used by CECOM as effective and efficient means of supporting the development
integration, and testing of these systems.

This work was supported by the Modeling and Simulation Branch of the C3I Modeling
and Simulation Division of the CECOM Research, Development, and Engineering Center The
concern of this branch is engineering models that support ongoing CECOM development areas
primarily in the area of digital combat radio networks.

The philosophical basis for engineering models is such that many of the standard ways
of speeding up the models may be unpalatable. These models are often started early in the
concept definition phase of a system acquisition and follow it through design, development
u ui^ dePloyment- The uses for the simulation model are not all anticipated ahead of time!
High fide ,ty is usually prized. Often the model will emulate the actual workings of the system
particularly those parts that are implemented as computer code. While a systems analysis model
might represent communications protocol by a statistical delay, an engineering model would be
expected to contain a detailed and faithful emulation of the protocol.

As a result, the use of approximations or simplifications in parts of the model may not
be acceptable. While they might give satisfactory results for the large majority of applications
some future application of the model might give misleading results.

For example, consider a hypothetical model of an infrared seeker that is used to select an
aimpoint from an extended target image at the terminal phase of intercept. A satisfactory and
fast model for use in high fidelity system effectiveness simulations might use a geometric

ZI* ,T ? 6 TT f°Cal Pl3ne imagC th3t dePends 0n e<Wment approach angles,
together with statistical characterization of miss distances in each dimension. An engineering
model, on the other hand, would be much more likely to represent pixel-by-pixel processing and
to emulate the real-time algorithm used to calculate an aim point. For most applications both
models would give essentially equivalent statistical results. If anomalous behavior were observed
during a system test, however, the engineering model would be much more useful in studying
possible ways of avoiding similar problems in future tests

10

CECOM System Performance Model

This model (SPM) was selected as a prototype for study and analysis in this effort. It is
an engineering simulation of the performance of combat radio networks connecting Operational
Facilities. These might be a Brigade Tactical Operations Center, a Battery Fire Direction Center,
an individual soldier acting as a forward observer, or an armored cavalry vehicle. Messages
might include intelligence reports, node status and location, weather predictions, movement
orders, firing plans, fire support requests, target assignments, etc.

The message traffic between the nodes may be scripted or may be randomly generated
in the course of the run. In either case, additional message transmissions may result from the
receipt of messages.

The major parts of the SPM are:

• Command and Control Component Model

• Protocol Component Models, including models of the Tacfire, Link Layer, 188-220,
188-220(), and TMG/INC protocols.

• Communications Component Models, including Single Channel Ground and Airborne
Radio System (SINCGARS), SINCGARS System Improvement Program, Enhanced
Position Location Reporting System, Mobile Subscriber Equipment Packet Network
(MPN), and earlier AN/PRC- radios.

• Communications Realism Submodel, including propagation effects due to terrain
between transmission and reception points along paths taken by vehicle-borne radios.

The SPM is implemented in the General Simulation System language. This system was
developed and is marketed by Prediction Systems, Inc. of Spring Lake, New Jersey. It allows
the model to be described in a structured english language based system. Subroutines or
functions written in C code may be used. It runs on Silicon Graphics workstations under the
UNIX operating system.

A typical run might involve 200 nodes interconnected by 30 networks each containing 10
to 30 radios. A single node may be on several (up to 7) networks by using multiple radio sets.
A time period of several hours might be simulated, with the simulation run itself taking several
hours. Important outputs are the percent of messages that are completed, the percent that are
completed within a specified speed of service, and the individual completion times (from message
creation to receipt).

11

3. SIMULATION MODEL VALIDATION

Importance of Validation

The scope of the current study has been expanded somewhat from speed of running a
single simulation to the broader context of using the model more effectively. If a model is not
valid for its intended use, then effort is wasted. If it is validated and accredited, then the
resulting increase in confidence contributes to effectiveness.

MT,
RTUt definitions have been developed by a Senior Advisory Group convened by the

Military Operations Research Society [Ritchie 1992]:

Validation: The process of determining the degree to which a model is an
accurate representation of the real world from the perspective of the intended
uses of the model.

Accreditation: An official determination that a model is acceptable for a
specific purpose.

By these definitions, validation is a continuing effort that might be going on throughout the entire
sequence of conceptualizing the simulation model through exercising it in a production mode
The validation work might culminate in several accreditation decisions based on different
purposes for the model.

In both military and civilian contexts simulation often provides a major input for makine
critical decisions concerning the real system being simulated. Those persons who are responsible
tor making such decisions are rightly concerned about the fidelity of the simulations in
representing the real systems. The simulations must correspond faithfully to those aspects of the
real system that contribute to making the right decision. From this point of view, the subject of
validation of the simulations is the basis for the simulation being an effective and trustworthy
representation of the real system. uuMwunny

As one might expect, a great deal of attention has been given to this issue. However
here has not been a great deal of resolution. It is generally agreed that in order to validate L

simulation model, empirical data are necessary and statistical procedures are desirable. However
omnibus methods for validation do not exist, and many approaches are problem specific. This
concern led the Army Research Laboratory to sponsor a research study conducted by this
contractor. The main thrust of the work was the development of a metric that expresses the
degree of validation that has been demonstrated. In its basic form, the metric is designed to
compare empirical data from the real system, assumed to be a very short list, with data from the
simulation, which may be extensive since the simulation is by its very purpose intended to be
an inexpensive surrogate for the real system.

12

Hypothesis Tests and an Alternative Approach

It is agreed that validation should be based on a match between empirical and simulated
data, but there is not usually any clear definition given for what constitutes agreement. Because
variation is an essence of empirical reality, a statistical approach seems appropriate for assessing
the closeness of the agreement. Many texts and journal articles propose standard statistical tests.

Formal statistical hypothesis tests are designed to determine whether there is sufficient
evidence to assert that two populations are different; for example, is a new treatment better than
a control. If they are really different, then as more and more data are obtained, the chances are
better and better that the measured results will show them to be different. No matter how small
the real difference is, if the sample sizes are large enough, the null hypothesis of no difference
will eventually be rejected.

For validation the question is whether or not two entities are essentially the same. This
is more than a semantic distinction; almost any null hypothesis of no difference between two
populations can be rejected if enough data are available. We already know that a simulation
differs from its target system: one runs on the computer and the other in the real world. What
we would like to know about a simulation is whether it gives results that are close enough to
those obtained with the real system. Let us suppose that it is possible to establish criteria of
closeness for each of the outputs of the system that are of interest. We can then consider the
degree of faith that the simulation gives results that are close to those from the real system.

This formulation is similar to a confidence limit problem. A confidence region is usually
defined for fixed confidence coefficient y to be the set of parameter values 0 that are such
that a test would not be rejected. Here the set of values of the difference between simulation and
reality is given, and we may use the confidence level as a metric for validation. This metric
ranges from 1, indicating perfect agreement, down to 0, a mismatch. If a lot of real data are
available and the model matches these data well, the metric should be close to one. If data are
few, or the model does not match the data well, the metric should be near zero.

To state this idea another way, if the simulation in fact matches the real system well, then
as more and more data are
obtained the metric should
increase to near one. If the
agreement is poor, then it
should decrease to zero. If
the situation is borderline,
then the confidence would
likely just dither around
intermediate values.

VALIDATION APPROACH COMPARISON

13

Validation of the SPM

A Verification, Validation and Accreditation effort for the CECOM System Performance
Model involving CECOM and AMSAA was underway, which provided an opportunity to support
the W&A analysis under this contract. Initial discussions of the philosophy of validation of
simulation models led to a decision to try out the metric approach rather than standard hypothesis
testing. Previous efforts of a similar nature using large quantities of available data had
experienced the problems noted with statistical hypothesis testing. In particular, a standard test
(the KS test) of whether two populations have the same statistical distribution had rejected the
hypothesis that simulated and observed message delay time data were from the same population,
even though it was clear that differences were of no practical consequence.

The validation plan for the System Performance Model centers around a field experiment
involving the Enhanced Position Location Reporting System (EPLRS). For over a hundred
needlines (links between nodes), data are available on the number of messages sent, the number
received, the number received within the specified speed of service, and the transmission delay
time. The simulation was set up with the identical laydown of radio sets and scripted with the
same set of messages sent.

It was decided that as part of the support to the VV&A effort, computer routines would
be developed to implement the computation of the validation metric. Previously the calculations
had been done by hand, which was impractical for the large data sets expected. It was further
noted that the data for comparison were of two types:

• Binomial data in which the result is one of two possible outcomes. Each
attempt at message transmission either met with success or not. If successful, the
delay was either within the speed of service requirement or not.

• Delay time data representing the actual time from transmission until reception.

Statistical procedures are available for testing hypotheses about whether two binomial
proportions are equal, or for establishing confidence intervals on single binomial proportions.
Methods do not seem to be readily available, however, for determining the confidence with which
two proportions lie within a specified interval. A new procedure for this purpose was required.
Moreover, the procedure needed to work for sample sizes ranging from just a few (say 5) to
several thousand. The case in which all trials were successes was common, but for some a
significant percentage were failures.

The most familiar statistical techniques for numerical data assume a functional form for
the distribution, such as the Gaussian or exponential. For the delay time data there was no basis
for any particular form from either experience or theory. Therefore a nonparametric approach,
in which no particular form is assumed, seemed appropriate.

14

SAMPLE BETA DENSITIES A Metric for Binomial Data

If the unknown probability
of success p on any one trial is
viewed as having a probability
distribution which is uniform
between zero and one before data
are obtained, then after observing
K successes in N trials, p has a
beta distribution. The figures show
that the probability density is
diffuse for small values of N and
concentrated for larger values (the
vertical axes are scaled arbitrarily
to emphasize the relative shapes).
The peak is near the ratio K/N. If
K = N, the mode is at the extreme
right end of the density.

Using this approach, the
probability that two binomial
proportions pj and p2 are within
±d of each other can be calculated
from the beta distributions on each
p. The numerical evaluation of this
expression over wide ranges of the
five parameters (d, N1} Kt, N2, and
Kj) is challenging, but is required
for the SPM data. Integrals of the beta densities are replaced by summations with finite step
sizes. The step sizes must be small enough to give satisfactory accuracy, but not so small as to
give unacceptably large computation times. If N is small, a fairly large integration step size
will give accurate results. If N is large, however, the density is very peaked and a small step
must be used. On the other hand, the density is negligible over part of the range. A second
problem is the exact evaluation of the binomial coefficients for N things taken K at a time,
which is equal to N! / K! (N-K)!. If N is large then this expression will cause computational
overflow except when K is close to N or 0. The techniques used to balance accuracy and
speed are given in Appendix A.

The question arises why all the concern with accuracy. Surely the user would not care
if the confidence were really .86 when .88 is reported. The answer is to insure that data sets will
be internally consistent. For example, the same result should be computed if the samples are
reversed, or if the roles of K and N-K are reversed for both samples. No jumps should be
discernable as sets of data values make transitions through boundaries separating regions in which
different computational procedures are used. Because all such constraints may not be anticipated,
it was decided to strive for three decimal place accuracy in the computer implementation, called
BETALIM2, that was supplied for use in the VV&A effort.

15

A Metric for Delay Time Data

For processing the message delay time data, a second procedure has been developed. The
metric expresses the confidence that the two populations are within a given tolerance ± d, and
is constructed based on differences between the ordered observations from the simulation' Xt,
X2, ... , Xm, and the ordered observations from the real system Y„ Y2, ... , Yn. The theory is
based on the presumption that if the two are the same, then any arrangement of X's and Y's
in the combined sample is equally likely.

The procedure developed uses the Mann-Whitney U statistic, which is a count of the
number of instances in which a member of the second sample is less than a member of the first.
The value of U can range from 0 if all the observations in the second sample are greater than
any in the first, to N, x N2 if all are less than any in the first. If two samples are very
different, then U will have a value close to one of these extremes. If they are the same, then
U will probably have a central value. If a sample of Nl X's is really from the same population
as a second sample of N2 Y's, then if all the Nt + N2 observations are sorted, then any
particular pattern of X's and Y's is equally likely to occur. The probability distribution of
U in this case can be computed from a recursion relationship giving the number of possible
arrangements of N, X values and N2 Y values that give the same value for U. For large
values of Nt and N2 a Gaussian approximation is available. This is based on the asymptotic
distribution, but is considered to be "reasonably" accurate for equal sample sizes as small as 6.

To form a metric giving the confidence that two samples represent populations that are
within an indifference ± d of each other in location parameter, the U statistic is computed
twice using the second sample values with d added and subtracted. The values of U are
compared with the percentage points of its distribution to obtain values that are differenced to
form the final metric.

The routine is complicated by the need to treat cases where one or more differences X.
-Yj are exactly equal to the tolerance -d or +d. Different combinations of possibilities need
to be treated correctly in the computerized algorithm.

A Fortran routine was developed implementing this procedure. At first, only the large-
sample approximation was implemented. The working version, called METRIC8, was developed
that improves the large-scale approximation slightly, but more importantly adds the exact
computation for cases in which both sample sizes are less than 20. This routine works by
building a table of the exact distribution, which is referenced for particular values of U. This
version was used by AMSAA to reduce the data for the validation effort.

Attempts were made to develop a version that would use the recursion relationships to
obtain distribution values as they are needed. If successful, this approach could have covered
the cases when only one sample size is less than 20. The attempts failed to achieve results in
reasonable amounts of computer time because they got tangled up in a complex tree of procedure
calls, so the approach was abandoned. This case occurs rarely if at all in the SPM data.

16

Application of the Approach to SPM

The metrics from the software routines provided were used to support the comparison of
the simulation based on test data obtained from EPLRS development testing. The results of the
application were presented by John Wray [1997] of AMSAA. He contrasted the conventional
statistical approach using statistical hypothesis tests to the metric approach, which provides the
difference level of the model in comparison to the test data.

Two scenarios using low data rates were compared, containing 132 radios and 115 duplex
needlines. Approximately 10% of the radios were located on moving vehicles during the test.
The simulation was run using the scripted communication traffic and the actual radio positions
and movement from the tests. For each scenario, the simulation was replicated three times using
different random number seeds.

For the message delivery time data, comparisons were made using the value of the
difference d from 1 through 5 seconds. Plots were obtained giving for each time difference the
percentage of needlines for which the confidence as indicated by the metric was at least 80% and
90%. Similar plots were obtained for the message completion rate, using difference levels of
from 5% to 10% of the completion rates from the tests.

Intelligence
Warfare
exemplified

LINES FOR WHICH METRIC IS > 80% A A .
A further comparison

was made in which data were
separated by length,

and Electronic
messages

long messages,
for which the required speed
of service was 90 seconds;
Fire Support messages
represented medium length
messages, which were
required in around 20
seconds; short messages, for
which the requirement was 4
seconds, were Air Defense

Artillery messages. It was found that for long messages, the model tended to predict slightly
shorter delivery times than found in the test data, and for short messages the opposite trend was
observed. The figure is representative of those used by Wray to present results (data in the figure
are not real).

In summary, the metric approach appears to give comparisons of simulation and real data
that are useful for analysts and that contribute to confidence in the simulation models.

tu o z
X UJ

*£ w n £8
J <*

°z z < Ox
H H
ü O.
< UJ

DC
O

TIME DIFFERENCE IN SECONDS

17

4. RANDOM NUMBER GENERATION

Use of Generators in SPM

SPM makes many calls to its pseudo random number generator. From a review of the
code there are around 100 calls made in over 60 of the 300 or so procedures that comprise the
model. According to the code and the available documentation, these are used for many
purposes, including the following:

• Statistical message generation
• Statistical treatment of mutual interference
• Message priorities
• Scheduled time slots for each radio set
• Frequency resource for each radio set
• Random access and processing delays
• Random occurrence of collision
• Percentage of chips affected by each collision
• Occurrence of frame synchronization
• Number of hops in a frequency segment
• Transmit profile for an interferer
• Occurrence of a bit error
• Selection of time slot block index
• Whether each leg of a relay is established
• Calculation of instantaneous power

There are several options available in GSS for generating random numbers: 1) using
RANDOM as a variable name sets that variable to the next random number in the interval 0 to
1; 2) calling UNIFORM produces a random number between specified limits; 3) calling EXPON
gives an exponentially distributed number, useful as a message generation time; 4) calling
TEXPON gives an exponentially distributed number truncated to avoid excessively long values;
5) NORMAL gives a number with the Gaussian or normal distribution; 6) TNORMAL gives a
truncated Gaussian number.

A random number generator must have a starting point and SPM has an interesting feature
to ensure that the starting point is random from one run to another. This is to use the current
value of the low order bits from the system clock. Optionally, the user may set the starting point
to a specified value read from one of many input files. However, this requires a change to a line
of code and recompilation. This procedure would be the norm during the debugging process
when a new case is set up or code changes are made.

It is recognized that generators are really deterministic; they always give the same
sequence given the same starting point. However, their effective use depends on their behaving
like random sequences in terms of frequency distribution, lack of repetition, and apparent
independence of successive elements. Testing for these properties is the next topic of discussion.

18

Properties of Random Number Generators

Surprisingly, the random number generators supplied in specific computer systems have
historically often been deficient. Due to their importance in CECOM simulations, an effort in
evaluating the generators used seems worthwhile

lllllllll

Y~ aiSn + c

"•Sn + t = {Y modulo m)

X ~ Sn + 1 / ft*
uiVifirirpfnlfttffäwwrtifrifrfi

LINEAR CONGRUENTIAL GENERATOR
Most generators work as follows:

an integer seed (usually a large integer) is
either supplied as an argument when the
routine is called or stored internally in the
code; the next integer in the random
number string is calculated and used to
replace the seed; the routine returns a real
number between 0 and 1 based on the
new value of the seed. The most
common type is shown in the figure. Its
properties are determined by the
multiplier a, the increment c (often just
0), and the modulus m. Since the cycle
will eventually repeat and the period can
be no larger than the modulus, m is
usually taken to be a large value, equal to
or close to the word length of the
computer.

There has been a great deal of theoretical work on good choices for the multiplier,
increment, and modulus. Much of it relies on number theory to determine choices that make the
cycle length as long as possible, and then to prevent obvious lack of randomness given maximum
cycle length. A summary is given by Knuth [1969].

The linear congruential generator calculates the n-th value from just the previous value.
A more complex type computes the next value from two of the previous values, often with a lag
between. For example, Xn+1 = (Xn + X..J modulo m. These are called Fibonacci generators
because they generalize the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, ... in which each number
is the sum of the preceding two. They also require internal storage of intermediate numbers.

In addition to long cycle length, a good random number generator would share other
properties with a truly random sequence. Among these are:

• Uniformity between 0 and 1
• Uniformity of pairs over the unit square, triples over the unit cube, etc.
• Independence of successive values.

Although some theoretical results are available, it is usual to rely on empirical tests of such
properties.

19

Specific Tests Developed

Although packages of tests for random number generators probably exist, none was
available for use in this effort, so a battery of tests was developed and programmed. Each will
be described.

The first test simply prints out the first three draws for each seed in both integer and real
form for inspection. The second attempts to check cycle length by brute force. It makes up to
30,000 successive draws of integers for a given starting seed, compares each with up to 20,000
last entries in the list, and stops if a match is found. It was found to be impractical to use.

Tests 3 through 7 were found to be effective tests for generators. They are fast running
and effective in separating known bad from good generators. Tests 3 through 6 implement ideas
mentioned by Knuth [1969]. The seventh is an implementation of a concept for a more stringent
test due to Marsaglia [1985].

Rantest3 - Pair Uniformity Makes 20,000 draws of pairs of real numbers and sorts them
into a 64 x 64 grid. It then does a chi-square test to check for uniformity.

Rantest4 - Gap Test Counts the number of successive real number draws for which no
element lies between values a and ß. Proceeds for a total of 7000 cases. It was run with the
width of the gap (ß - a) equal to .1 and the beginning point set to the five values 0, .15, .45, .75,
and .9. Thus, five different gaps were used in the testing. This is a particularly important test
for applications such as SPM because random number draws are often used to determine
probabilities of events. Good performance means that the recurrence times of such events will
be as expected by theory.

Rantest5 - Permutation Test Draws 5000 sets of 6 numbers and categorizes each by
which of the 6! possible permutations they fall in when sorting them by size.

Rantest6 - Run Test Finds the lengths of runs in which successive values are all
increasing, for 40,000 runs. Runs of 8 or more are lumped together.

Rantest7 - Overlapping Triples Sorts 30,000 overlapping triples of numbers into an 8 x
8x8 grid, and tests for uniformity. Because the triples are overlapping, the test also will detect
lack of independence.

In order to test the tests, a battery of 14 random number generators has been assembled.
Three are generators that have been used in developing simulations by the author. The rest are
implementations of generators mentioned as both good and bad examples by other authors. The
generators are described and listings given in Appendix B. Testing of each Rantest was
performed with a set of 23 seeds. Most tests take about a minute of computer time on a 486
personal computer. The exception is the cycle length check in Rantest2, which takes about 25
minutes per seed if no repeat is found. Fortunately, other tests seem to detect generator-seed
combinations for which short cycle length is a problem.

20

Output from the Rantest Routines

Suppose Rantest3, which counts the frequencies of successive pairs of random numbers,
is applied to a specific generator. The result is a 64 by 64 array of integers, whose sum is
20,000. If the generator works properly, then all cells are equally probable and the numbers in
the cells would show some random variation around the average of 20000 / 642 = 4.88. Let
E(be this expected cell count and let A; be the actual cell count for cell i. Then the statistic
(A; - E;)2 / Ej summed over all cells has a distribution that is approximately chi-square with
degrees of freedom equal to the number of cells less 1. The test routine calculates this sum and
uses the functional form of the chi-square distribution to calculate the probability that the value
obtained would be this large or larger due to chance if the cells are really equiprobable. A partial
output for GEN_K follows (the complete output is in Appendix C).

PAIR UNIFORMITY CHI-SQUARE TEST FOR GENERATOR: GEN_K
2(

SEED
20000 PAIRS, SORTED INTO 64 BY 64 GRID
D VALUE CHISQUARE P VALUE
2 1 4129.54 .349621
3 2 4088.58 .526107
4 3 4016.49 .806821
5 4 4088.17 .527910
6 123456789 4120.52 .387005
7 1111111 3944.40 .952956
8 6999 4119.30 .392197
9 65536 4159.03 .238767

If the generator is good (this one is), then the P values will themselves be randomly scattered
between 0 and 1. If the generator is not good, then at least some of the P values will usually be
small. Some are so extreme that the P values are near 0:

PAIR UNIFORMITY CHI-SQUARE TEST FOR GENERATOR: GEN_F
2 0000 PAIRS, SORTED INTO 64 BY 64 GRID

SEED VALUE CHISQUARE P VALUE
2 1 450315.00 .000000
3 2 449300.40 .000000
4 3 450047.90 .000000
5 4 449123.90 .000000
6 123456789 451006.80 .000000
7 1111111 449488.40 .000000
8 6999 448922.00 .000000
9 65536 449632.20 .000000

• • •

Output tables from the other Rantest routines are similar, except that Rantest4 is written
to give P values for 5 different gaps, so that 5 columns of P values are printed.

21

Testing the SPM Generator

For applying the Rantests to the SPM generator, a slightly different procedure was used
than for the test generators. The testing procedure for the 14 test generators was to compile the
Rantest routines with the call changed to the name of each generator in turn. The generator used
in SPM is the one provided by the GSS system. For testing it, a file of 70,000 successive values
was constructed for each of the 23 seeds, which was then used to run the tests at CECOM.
Rantest3, Rantest5, and Rantest7 each use a fixed number of random numbers less than 70,000.
Rantest4 uses a variable number until a specified gap count is achieved. The gap count was
reduced from 7000 to 6500 so that the file would not be exceeded. Similarly Rantest6 was
modified; 40,000 runs of length up to 8 was reduced to 25,000 runs of length up to 6 for the GSS
generator.

For summarizing the results of all tests,
it is convenient to use a plot. The P values
resulting from all tests on a given generator,
approximately 200 in number, are placed in
rank order, then the values plotted against order
number. A good generator like GEN_K gives
a plot that is essentially a straight line from
(0,0) to (1,1) as shown in the top figure. The
second figure, for GEN_L, uses the multiplier
of the notorious RANDU. This generator was
supplied by IBM as a library routine in the
1960's. It was good enough to be supplied but
was discovered by users to have decidedly
nonrandom properties. It deviates considerably
from the 45 degree line.

The final figure gives results for the
GSS generator. The deviation from the 45
degree line is noticeable, but not as great as for
GEN_L. This would suggest that the generator
is not the best, but is probably adequate for
most applications. In particular, the
applications in the SPM would not seem to
require a great degree of subtlety in the
interrelationships between successive random
number draws to attain answers that are reliable
for the needs of the analyses made.

COMPOSITE RESULTS

And What if a Generator is Bad?

If a given generator fails one or more of the Rantests, then the sequence of generated
numbers does not share some property of theoretically random numbers. How serious this may
be depends a lot on how the numbers are used. Marsaglia [1985] developed his tests to support
"... increasingly sophisticated Monte Carlo uses, such as in geometric probability, combinatorics,
estimating distribution functions, comparing statistical procedures, generating and testing for large
primes for use in encryption schemes, and the like."

One misuse of random numbers is to rely too heavily on low-order bits. If entities are
to be assigned at random to two classes, one might be tempted to make the assignment according
to whether a random integer is odd or even. The low order bits are known to be decidedly
nonrandom even for generators that may otherwise be reasonably good. The Rantests did not
check low order bits.

Marsaglia goes on to say that for most purposes generators work remarkably well, and
even bad generators may be good enough.

In most cases the user of a bad generator will not notice that anything is amiss. Attempts
were made to use bad generators in simulation models discussed elsewhere in this report to see
if their effect would be noticed, with negative results. The output looked much the same with
good or bad generators. Presumably it would be possible to find some element of the behavior
of the simulation that is similar to a Rantest that a bad generator flunked, then introduce
additional model output that would find this bad behavior, but doing so would be difficult and
contrived.

Still, if a generator is bad, then the simulation using it is not modeling exactly what was
intended. The answers are wrong without giving the user any indication. A Monte Carlo routine
designed to evaluate an integral will be converging to the wrong value. We may speculate that
the degree of error may not be very serious in a case of interest, but whether or not this is true
is unknown.

On the other hand, it is known that bad random number generators can lead to bizarre
behavior observable in details of the output. A specific example of this happening could not be
found, however. More often, an analyst may try to explain strange details as being an artifact
of the generator (the author has been guilty).

As a final thought, suppose that the generator has been demonstrated to be beyond
reproach. Then any concerns that the analyst might have are alleviated. Any strange-looking
behavior is either a problem with the model or else is just due to a strange sequence of random
numbers. It is easy to determine which is the case, simply by rerunning the case with a different
random seed. For example, a simulation of communications between four radios, to be discussed
in the next section, had the first 5 transmission attempts all interrupted by interference, which
should be a rare event. In this case it was just an unusual sequence of draws. The effect
disappeared as other cases were run.

23

5. RANDOM NUMBER SYNCHRONIZATION

Purpose of Synchronization

Often simulation runs are made to compare different system options. The original
requirement description for this effort mentions use of simulations to evaluate the impact of
doctrinal or operational changes, and the effectiveness of technology insertion. In order to make
effective comparisons between different cases, it is desirable to cut down on variability of the
comparison. One way to do this effectively, is to take care that each entity that uses random
numbers will always see the same stream. If this is not done, then the random numbers used in
different cases may start out the same, then diverge at some point. This can make comparisons
between cases misleading, as an example will show.

Suppose that a radio set is used
to receive messages that are sent at an
average rate of one every 3 time units.
When a message arrives, there is a
probability of 10% that it will be
missed. If not, then the radio set is
occupied in receiving and processing
the message for a random time of
average length 5 units.

A simulation was written to
determine the number of messages
received in 100 time units with this
setup. This program consisted of
about 400 lines of Fortran, of which
only about 20% was new, the rest
being reused from another model.
First, all random number draws were
made from the same string. The
average was about 12 messages, with

the range being 8 to 16.

A second run was made in which the arrival rate was increased to one message every 2Vz
time units. More messages should be received. Out of 20 cases, only 10 were such that more
were received. Five received the same and 5 received fewer. The reason is not that somehow
a form of contention arises at a higher input rate, but that different random numbers get
associated with the messages.

The simulation was rewritten to segregate the draws for message arrival times, reception
probabilities, and processing times. This is done by keeping track of three different seeds and
making each call with the appropriate one. This time, a comparison showed that in 15 of 20
cases there were more messages received at the higher rate, in 4 the same number, and in only
one case one fewer messages was received. The sample sizes used are not large enough to prove
the case, but the results suggest that random number synchronization bears a closer look.

24

A Simulation for Developing Synchronization Methods

It is possible to structure random number draws in such a way to reduce the variability
of comparisons to be made using a simulation model. To demonstrate the use of this technique
and to study its effectiveness in communication systems simulations, a simulation model was
developed, which is simple but of more substance than that on the previous page. Once again,
it was adapted from an existing event-oriented model. Of about 900 lines of Fortran, about a
third were reused, consisting of the event calendar, input and output, and utility routines; two-
thirds were new, consisting of the processing associated with the occurrence of the events.

A small number of observation posts are able to communicate with each other by radioing
messages of varied lengths. Events occur that cause one post to send another a message.
However, the message transmission may only be initiated during a time slot that is assigned to
the sending post. The assignment of time slots cycles among the posts.

If a transmission attempt is made when the intended recipient is busy sending or receiving
a message with another post, then the message is placed in a storage buffer. Similarly, if a
message triggering event occurs while the post is engaged in communication, the new message
is placed in a buffer. Attempts are made regularly to send the messages in the buffers as the
assigned time slots occur.

There are a fixed number of storage buffers available in each radio. If a message
triggering event occurs when the buffers are all in use, the corresponding message is dropped.

If a transmission attempt is made when the recipient is not busy, then with high
probability the message will go through. There is a small probability that the message will not
be completed, however, and the sender is unaware that the message is not sent.

for
If the message goes through successfully, then the sending and receiving radios are busy

the duration of the transmission.
However, at random times interference
events occur on the links between pairs
of posts. If an interference event occurs
during the time that a message is being
transmitted, then the message goes into
the storage buffer system for later
retransmission. An interference event has
no effect if the link on which it occurs is
not in use at the instant of its occurrence.

The system operates for a fixed
period of time. At the end of this period,
no more message triggering events occur,
but transmissions continue until all
buffers in each radio have been cleared.

SIMPLE FOUR - RADIO MODEL

25

POSSIBLE MESSAGE OUTCOMES

Successful Completion
,—^"^^^— - --- - :

Recipient Busy • Place In Queue

Message Lost at Transmission Attempt

Interference - Queue for Resend

- ••• M
Busy when Time Slot Occurs - Place In Queue

b>|^,r\v.Y.^^-,%|>;v;;-^^:;-^:^:;/;-:-;:v:^:-:-::-::v;-;vx-:-;-;-- '-"■"■'■"■' •■•■v.v.v.v.v.v.v.v.v.v.v.YtY|Y.|

Busy and Buffers Full - Drop Message

*"r ■ ■

Buffers Full When Event Occurs • Drop Message

to a successful completion (figure).

Possible Outcomes of a
Trigger Event

When a triggering
event occurs it is associated
with a particular radio. If
that radio is not busy, then in
effect the corresponding
message is composed and
placed in an "immediate
send" buffer for transmission
when the next time slot
comes up for the radio. At
that time, an attempt is made
to send the message. If the
recipient is not busy, then the
transmission is initiated and
with a little luck goes through

If the intended recipient is busy at the time the transmission is attempted, then the
message is placed in a storage buffer for later transmission. With a certain low probability
(nominal 2%) the transmission attempt will fail and the message be lost.

Random interference events occur on each of the links. If such an event occurs while a
transmission is underway, then the transmission is interrupted. The message is placed in a
storage queue for later retransmission. The retransmission will start again at the beginning of
the message, with no credit given for the part that was previously transmitted.

If the radio is busy when the triggering event occurs, then the message is placed in the
storage queue. Similarly, if the radio was not busy and the message was composed in the send
buffer, but before the radio's time slot comes up the radio becomes busy by receiving a
transmission from another radio, then the message is removed to the storage queue. Both these
options are lumped in the fifth line of the figure.

If a message is to be placed in the storage queue for any of the above reasons, but the
queue buffers are all full, then the message is lost. The last two lines of the figure illustrate that
this may happen whether or not the radio is busy.

If a radio is not busy but has messages stored in its buffers, then as each of its assigned
time slots comes up, it moves the message from the first storage buffer into the send buffer for
the next attempt. All other messages are moved up in the queue. If the attempt is not successful,
then the message goes back to the end of the queue.

26

Sample Timeline

A sample timeline using the model is shown in the table. An interference event that
occurs when a link is not in use is denoted "Interference link y," where y is the link number,
while interference occurring during a transmission is denoted "Interrupt Mx," where x is the
message number. As a standard case, the model is run with 4 radios and the following

parameters:

• Mean interarrival times of trigger events: 20 time units for each radio
• Mean service time: 6.5 time units for each radio
• Number of buffers: 4 in each radio
• Probability of message loss: .02
• Assigned time slot length: .1 time units for each radio
• Mean interference interarrival time: 30 time units.

Time Radio 1 Radio 2 Radio 3 Radio 4

0.00 idle idle idle idle

0.18 Interference link 2 Interference link 2

0.75 Event 1
0.80 Start transmit Ml Receive Ml
2.29 Event 2 queued
2.81 Event 3 queued
4.08 Interference link 2 Interference link 2

5.04 Interrupt Ml Interrupt Ml

5.20 Start transmit Ml Receive Ml

5.31 Event 4 queued
6.39 Event 5

6.60 Try M5 - busy

8.35 Interference link 6 Interference link 6

9.63 Event 6

9.90 Receive M6 Start transmit M6

11.52 Event 7 queued

13.97 Event 8 queued

18.48 Interrupt M6 Interrupt M6

18.99 Interrupt Ml Interrupt Ml
19.00 Receive M8 Start transmit M8

19.58 Event 9 queued
20.48 Interrupt M8 Interrupt M8

20.50 Start transmit M2 Receive M2

21.10 Receive M7 Start transmit M7

21.98 Interrupt M2 Interrupt M2

22.10 Start transmit M3 Receive M3

22.94 Event 10 queued
23.47 Event 11 dropped
24.12 Interference link 1 Interference link 1

25.75 Complete M7 Complete M7

29.71 Complete M3 Complete M3

29.80 Receive M5 Start transmit M5

32.92 Complete M5 Complete M5

33.00 Receive M8 Start transmit M8

33.98 Interference link 1 Interference link 1

27

Output from the Model

Responses for the model are the total number of messages formulated, the number
dropped, the number lost, the number transmitted successfully, the average length of time from
message trigger until transmission is completed successfully, the number of messages for which
this time length is less than a specified speed of service threshold (set to 50 time units), and the
excess time after the operational period ends until all messages are disposed. Derived responses
are the proportion of total messages received successfully and the proportion that are received
within the speed of service threshold.

The model is typically run for several replications and the means and standard deviations
of the responses tabulated.

Results averaged over 20 replications of a 200 time unit period are as follows:

• Total messages (triggering events) = 39.35 (±1.10)
• Number dropped because of buffer saturation = 0.80 (±.21)
• Number lost because transmission attempt failed =1.10 (±.25)
• Number completed = 37.45 (±.97)
• Number completed within 50 time units = 32.30 (±1.05)
• Average completion time of those completed = 26.11 time units (±2.07)
• Average percent completed = 95.34% (±.76)
• Average percent completed within 50 time units = 82.60% (±2.50).

In addition to the average value, the standard error of the mean is given for each response. The
standard error of the mean is the standard deviation of the response from the 20 runs, divided
by ypm. This measures the variability of the average from the 20 replications, and can be used
to compare results from different cases.

Some modeling details will be mentioned. The message triggering event process is
Markov; that is, times between successive arrivals are independent and exponentially distributed.
The mean interarrival time for each radio is specified as input. The interference event process
is also Markov, with the same mean time between occurrences for each link. The message
transmission lengths are Erlang distributed, with the shape parameter equal to 3, but with the
means possibly different for each radio.

Although the model was generally run with 4 radios, it is dimensioned for up to 49. The
corresponding number of links between pairs of radios is 1176.

28

An Attempted Comparison and Synchronization

The simulation was run a second time with the number of buffers increased from 4 to 5,
to evaluate the improvement in the average percent completed. The result, however, shows that
the percent completion decreased to 94.51 and the average number dropped increased to 1.25.
How can increasing the number of buffers decrease performance?

A closer examination of the results from the two cases shows that the first replication is
identical, and the second (from which the timeline given on page 27 was extracted) is identical
up until time 23.47, at which time message 11 is not dropped. After that time, radio 1 has an
extra message cycling in its buffers as its time slots come up. Not until time 97.2 is the message
sequence altered, when radio 1 sends a different message with an earlier completion time.
Shortly thereafter, a difference in messages sent causes a conflict so that one less message
initiation occurs, one less draw is made, and the arrival processes then start to diverge for all
radios. Eventually a sequence of close event arrivals all for Radio 1 occurs, causing several
messages to be dropped even with the larger number of buffers. Ultimately, 6 messages are
dropped for this replicate, as opposed to the nominal case for which only message 11 is dropped.

The simulation was rewritten so that the random number draws will remain synchronized.
The sequence of calls to the random number generator is

• Initialization:
- first message trigger event time for each radio
- first interference event time for each link

• At message trigger event
- next trigger event time for this radio
- recipient for the message
- length of the message

• At message transmission event
- draw against probability of message loss

• At interference event
- next interference event for this link.

The synchronization is effected by introducing an array of seeds for the random number draws.
There are four seeds associated with each radio, one for each different usage, and one with each
link. At the start of each replication, the array is initialized with a separate random number
generator, with its own control seed, that will always provide the same starting point independent
of the input parameter values. The basic generator used is a standard published routine called
UNIF2 in Appendix B and the initialization generator is called GEN_A. The resulting model
may be called Syncsim and compared with Plainsim, the original.

29

Comparison of Svncsim with Plainsim

Comparable results for the baseline case with the two simulations are in the table. Since
the purpose of this example is to compare results with and without synchronization, these results
were obtained by trying ten different seeds and using those providing the best match for these
responses. The agreement between the nominal Plainsim and nominal Syncsim is therefore
somewhat closer than what would be seen between randomly chosen samples.

RESPONSE PLAINSIM SYNCSIM

Number of messages
Average time
Completion ratio
On-time ratio

39.35
26.11
95.34%
82.60%

39.45
25.75
94.98%
82.04%

Of interest is what happens when the number of buffers is increase to 5 in Syncsim. The
completion ratio increases from 94.98% to 96.42% and the average number dropped decreases
from 1.50 to .75 messages, which follows intuition and common sense. Cases were run with
each of the key input parameters increased and decreased from nominal, and all responses now
vary in the expected direction. A good comparison between a nominal case and an excursion is
provided by the differences in responses between each replication. For example, the completion
percentages for the 4 versus 5 buffer case and their differences follow.

PLAINSIM Completion Percentage SYNCSIM Completion Percentage

Rep# 4 buffers 5 buffers difference 4 buffers 5 buffers difference

1 95.12 95.12 0. 92.31 92.31 0.
2 95.24 83.67 11.57 100.00 100.00 0.
3 92.68 95.83 -3.15 97.56 97.56 0.
4 97.22 97.30 -0.08 97.06 97.06 0.
5 93.48 96.43 -2.95 97.22 97.22 0.
6 100.00 93.88 6.12 91.67 91.67 0.
7 100.00 95.35 4.65 100.00 100.00 0.
8 87.18 91.89 -4.71 95.35 95.35 0.
9 100.00 94.29 5.71 97.73 100.00 -2.27

10 97.78 93.55 4.23 100.00 100.00 0.
11 94.74 95.56 -0.82 90.00 92.50 -2.50
12 100.00 100.00 0. 86.67 88.89 -2.22
13 96.88 88.24 8.64 85.42 87.50 -2.08
14 95.35 90.91 4.44 90.00 97.50 -7.50
15 95.45 86.79 8.66 100.00 100.00 0.
16 93.02 100.00 -6.98 97.56 97.56 0.
17 97.06 100.00 -2.94 97.22 100.00 -2.78
18 91.43 96.77 -5.34 91.11 95.56 -4.45
19 92.68 97.14 -4.46 95.65 97.83 -2.18
20 91.49 97.44 -5.95 97.14 100.00 -2.86

30

The Si2nificance of the Observed Improvement

The variability of the differences is noticeably less using Syncsim than with Plainsim.
The standard deviations of the differences in the table just given are 5.53 versus 2.00. This is
a significant reduction in the standard deviation. Suppose that the primary purpose of the
simulation runs is to measure the improvement in performance precisely by averaging over a
(possibly) large number of replications. The standard error of the average from n replications
is the standard deviation a divided by vTi. Therefore for Syncsim the estimated average
difference is -1.442, with a standard error of .447. To obtain this same precision using Plainsim
with a a of 5.53, requires that n be increased from 20 to 153. This is over IVi times as much
simulating (the square of the ratio of the standard deviations). Synchronization has in this case
effectively divided the overall running time by a factor of IVi.

Similar comparisons were made for each of six input parameters at an increased and
decreased level. These were the probability of making a connection, number of buffers, slot
length, interference event arrival rate, average message length, and triggering event arrival rate.
The responses average time, completion ratio, and on-time ratio were used (see table). In all
thirty-six cases the standard deviations of the differences were less using Syncsim. The table also
gives in the "Benefit" columns the square of the ratio, which measures the increase in sample size
required for Plainsim to achieve the same precision as given by Syncsim.

A further demonstration was made by employing a 36-run experiment design using all six
of the key input parameters with the same three responses. A 28-term model was fit to the
results. The residual standard deviations were found to be less using Syncsim. Moreover, the
fitted models were more parsimonious and easier to interpret.

A key element of the approach is the use of two different random number generators, one
to supply the starting seeds for the other. A test was developed adapted from Rantest7. At least
for this example, it appears to be more critical that the generator used to supply the seeds be of
high quality.

Plainsim Syncsi m Benefit

Parameter Time Comp SoS Time Comp SoS Time Comp SoS

P connect + 15.8 .071 .194 1.8 .011 .019 80 38 101

P connect - 14.2 .060 .172 2.0 .015 .040 53 16 18

Buffers + 12.0 .082 .177 4.1 .033 .044 8 6 17

Buffers - 17.1 .055 .199 1.6 .020 .032 119 8 38

Slot + 9.5 .047 .121 4.3 .020 .070 5 6 3

Slot- 11.3 .050 .138 3.6 .027 .072 10 3 4

Intrfer + 11.5 .046 .126 6.6 .030 .090 3 2 2

Intrfer - 13.4 .063 .176 4.8 .037 .079 8 3 5

Length + 14.3 .047 .180 3.4 .026 .078 18 3 5

Length - 15.3 .073 .210 4.4 .023 .075 12 10 8

Arrivals + 14.6 .065 .168 4.3 .019 .072 11 11 5

Arrivals - 10.6 .044 .128 5.2 .028 .074 4 2 3

31

A Recipe for Synchronizing Random Numbers

Synchronizing the random number draws is easy to do for any existing or new simulation,
and it seems to be very beneficial in allowing comparisons to be made. It should be made a part
of any simulation. The only exception is a simulation that always makes exactly the same
random number draws by its design (which is effectively already synchronized). Here is how
to do it.

1) Identify all the random number draws and associate each with an entity and a purpose.
For example, in SPM entities might be nets, radios, hostile jammers, and operational facilities;
purposes for a radio might include scheduler delay, probability of frame synchronization, and
probability of collision.

2) Attempt to place random number calls in procedures before any branching, so that the
same number of draws is made with each procedure call. A few wasted draws are of little
concern.

3) Replace all random number draws by a call to a new routine RANDOM that gives as
output the random number and accepts as input indices I for entity type, J for entity number, and
K for purpose of call. Variants are possible; for Syncsim only J and K are used, with K values
of 1 to 4 used for message arrivals, message recipient, message length, and probability of failure
for radios, and K of 5 used for links.

4) Set up an array of seeds so that each UK combination has its own seed. This may be
done with a single triply dimensioned array or with a combination of arrays; the latter is
particularly useful if there are disparate numbers of different entity types. Syncsim is
dimensioned for a total of 49 radios and uses a 4 x 49 array for radios and a separate singly
dimensioned array of length 1176 for all possible links between pairs of radios.

5) When called, routine RANDOM selects the appropriate seed array and seed, then uses
it in a call to the actual generator. The new seed produced by the generator is returned to the
seed array and the real number X returned to the caller.

6) There remains the task of initially filling the seed arrays. This may be done
conveniently by means of another new routine RANSET, which is called at the beginning of the
simulation run and again at the beginning of each new replication if more than one sample is
included in the case. This routine uses a single seed as a user supplied input. It then uses a
second random number generator, independent of that used in step 5, to fill in the seed arrays.

This procedure should be easy to implement for any simulation and give results that are
easy to use and interpret. An ingenious alternative approach to step 4 that was developed by Jeff
Niemuth is given in Appendix D. It uses a singly dimensioned array of seeds and an auxiliary
doubly dimensioned array to accommodate differing numbers of entities of various types.

32

6. EXPERIMENT DESIGN FOR SIMULATION STUDIES

Motivation for Experiment Design

A Simulation model usually has many input variables, and there generally comes a time
when the user wants to explore what happens as these are changed. Assume that a reference set
of input parameter values has been established, perhaps by modeling a baseline concept. The
next step is often to run sensitivity analyses, in which one variable at a time is changed from its
nominal value. This step is useful in establishing which of the many variables are the most
influential, and in screening out some variables that are of no further interest, either because they
have no effect on system performance or their effect is undesirable and the baseline value is the
only suitable value.

A next logical step is to run further sensitivities, except that each variable that is still of
interest is changed from nominal in the opposite direction than in the first set of sensitivity runs.
Of course this only makes sense for variables that have a natural ordering and for which both a
higher and lower value is meaningful for the simulation.

The question then remains as to what happens as several or many variables are changed
from their nominal values. If only two or three variables are still of interest, then it makes sense
to run all further combinations of levels that have not as yet been run. In this framework, we
are dealing with three levels for each variable: nominal, high, and low. With two variables there
are nine combinations, of which the five with at least one variable at its nominal value have
already been run. The picture is completed by running the four remaining cases in which both
variables are at either high or low values. With three variables, there are 27 combinations of
which 7 have been run. Running the remaining 20 is a lot of work, but is not out of the
question. With 4 or more variables, we need to look for an alternate approach.

There are several features of experiments with simulation models that do not jibe with the
standard theory and practice of experiment design, which has been developed for experiments in
the physical world. A key one is the choice of a reasonably sized set of input variable
combinations to use for running simulation cases. For example, there are few suitable published
designs for moderate numbers of variables all of which appear at three levels. Also, the usual
selection criteria for finding designs depend on the error structure and on the terms appearing in
the models.

Two areas within the general field of statistical experiment design are particularly
relevant. Factorial design deals with the situation in which the independent variables are
restricted to discrete levels, usually two or three. The purpose of factorial design is to obtain
efficient estimation of parameters that are assumed to describe the response of the system at any
combination of levels. The area of response surface design deals with a response that is an
unknown function of several continuous variables. The value of the response may be estimated
by running experiments at any combination of values within some region of interest. The
purpose is often to find combinations of the independent variables that optimize the response.

33

Models to be Used

We will assume that the simulation model being used has some random components
implemented by means of a pseudo-random number generator. For any combination of values
of the input variables, the simulation gives a response that is subject to error because of the
randomness. Presumably we could eliminate the random error by making a very large number
of iterations, say as many as the cycle length of the random number generator, and averaging.
In practice we will make a suitable number of iterations to drive the random error of the average
down to a small value.

We will restrict attention to the situation in which the input variables are all numerical
and are restricted to just three values. The full design obtained by running an experiment at
every possible combination of levels is called the full factorial. The response for any set of input
variables can be expressed in terms of a model that contains a grand mean, main effects, and
interactions. The grand mean is the average response for all points of the full factorial. The
main effects of any single input variable are the linear and quadratic components of the responses
at the three levels of the input variable, averaged over all combinations of levels of all the
remaining variables. The two-variable interactions are components of the responses at the values
of two of the variables averaged over all combinations of the remaining variables. The two-
variable interactions may be resolved into four components: linear-by-linear, two linear-by-
quadratic, and quadratic-by-quadratic. Higher order interactions involving more than two
variables may be defined analogously.

We will adopt as a working hypothesis that the response may be approximated adequately
by just a subset of the terms. Specifically, we will assume that the subset contains just the grand
mean, linear and quadratic main effects for each input variable, and linear-by-linear interactions
between each pair of input variables. If this is the case, then it should be possible to calculate
values for the operative terms from just a subset of the full factorial. Intuitively we expect that
some subsets would be more suitable than others.

The response at any combination of input variables can be expressed as a linear
combination of the unknown effect and interaction parameters plus error. In vector and matrix
notation, let Y be a column vector of N responses from the experiment. Let ß be the vector
of k unknown parameters and let e be the N-component vector of errors. Then

Y= Xß + e,

where the coefficient matrix X, called the design matrix, is used to express the dependence of
the responses on the parameters. In the usual case in which k is less than N and the matrix
X'X is nonsingular, the least-squares estimate of ß is given by

ß = (X'X)"1 X'Y.

If the components of e are independent and all have the same variance a2, then the covariance
matrix of ß is given by (X'X)-1 o2.

34

Designs for Simulation Studies

We have envisioned a simulation study involving a baseline case, followed by sensitivity
runs each with one variable increased and then decreased, followed by more runs with several
variables changed jointly. The experiment design for this sequence of cases
would then have several features:

• It contains as a subset the points of the sensitivity studies
• It allows estimation of all main effects and all linear-by-linear interaction terms
• It has a moderate number of factors.

The experiment design literature does not seem to offer suitable designs sharing these special
features. Therefore designs were developed for 3 to 10 factors, and are given in Appendix E.
A summary of the designs (including the two-factor full factorial) appears below.

factors 2 3 4 5 6 7 8 9 10

parameters 6 10 15 21 28 36 45 55 66

runs 9 15 21 27 35 44 54 65 77

Efficiency % 100 96 82 81 70 59 53 46 41

The designs were obtained and evaluated using an existing Experiment Design Evaluator
written by the author. This interactive routine evaluates a given design, then gives the user an
evaluation of which points might best be added to the design or deleted from the design.
Iterative use of this exchange algorithm can often lead to improved designs. The criterion for
improvement is related to the average statistical variation of a fitted response, where the average
is taken over all points of the full factorial. This can be expressed in terms of the inverse of the
cross-product matrix X'X as defined above. The criterion can also be considered in terms of
how a subset design compares with the full factorial. The latter is fully efficient, but at the
expense of being an extremely large design if the number of factors is not small. The
efficiencies in this sense for the subset designs are included in the table. They are quite high
considering the small sizes of the subset designs relative to the full factorial.

35

Application of Experiment Design to a Simulation

The Simulation chosen for this experiment models an assistance telephone line for users
of a widely disseminated computer software product. Customers call in with questions or
problems for which they need expert assistance. Up to 5 service representatives are used to field
their inquiries, but on any given day, up to two servers may be absent. The probability is .15
that exactly one server will be out, and .05 that exactly two will be out.

If all servers present are busy when a call arrives, the caller is put on hold. At this time
a caller may decide that the wait isn't worth it and hang up. This balk probability depends only
on the length of the queue. The balk probability is zero for a queue size of from 1 to 5, then
increases linearly to be 1 at 10. Once a caller has decided to wait, he or she will continue to
hold until served.

The phone line is configured with 10 hold positions. If a call arrives when these ten slots
are already taken, it receives a busy signal and the caller must try again later. The line opens
in the morning at 8, and runs all day until 5 in the afternoon. Calls arriving before 8 are put in
the hold queue. Any calls that are on hold at 5 are retained and will eventually be answered by
a server.

The arrival of calls will vary throughout the day. The arrivals are modeled as having
independent exponential interarrival times with mean values as a function of time of day: 2.79
between 9 and 11, 2.79 between 1:20 and 4:20, and 6.44 at other times between 7:50 and 5.
Service times will be independent of each other, of the time of day, and of how many callers are
waiting. They will probably have a long-tailed distribution; this is assumed to be Erlang with
parameter 2 and with mean service time of 9.5 minutes.

There are four responses of the system that are of interest for each day simulated. These
are: 1) The number of customers served, which is a function of the arrival distribution and of the
number of balks. 2) Maximum queue length that develops. 3) Utilization factor for the servers,
expressed as the percentage of the time' from 8 to 5 that the servers present are on the phone.
4) Average wait for service, expressed as total waiting time divided by the number of customers
served (whether they actually had
to wait or not).

This example is based on a
slightly simpler example given by
Bratley [1983]. Their context is
arrival of customers at a bank to be
served by tellers. Fortran code,
again adapted from that provided
by Bratley et al, was used to model
the service phone line system.

CUSTOMER SERVICE PHONE LINE

Open & close
ofphwellrw

"s.
Number of «rvws

Cu«om#re«ri
«ir!v«J proctt*

Queue structure

I
Service lime
<8stfH>uöon

36

The Experiment

The experiment involved seven input variables whose levels are in the table below. The
design consisted of 44 points out of the 37 = 2187 of the full factorial (2%). Simulations were
run for 100 days each. The random number strings were synchronized so that the same random
draws were made on each day no matter what the values of the input variables. The four
responses were averaged over the 100 days.

Factor Low Level Nominal High Level

A. Queue length without balk 3 5 7

B. Prob of absences 1,
or 2

.10

.00
.15
.05

.20

.10

C. Opening time 7:40 8:00 8:20

D. Number of servers 4 5 6

E. Mean service time 8.5 9.5 10.5

F. Closing time 4:40 5:00 5:20

G. Mean interarrival times 6.12
2.65

6.44
2.79

6.76
2.93

The design points and values of the four responses are given in Appendix F, as are the
estimated values of the parameters. Almost all of the linear main effects are appreciable, as is
the quadratic effect of the number of servers. Ten of the 21 interaction terms also have
appreciable influence on the responses. The fitted responses using the full 36-term model
approximate the original observations quite well.

An example of one of the models resulting from this analysis, for total customers, is given
here. All terms that are smaller than .15 (rounding to .0 or .1) have been omitted.

Effects:
Mean 144.9
A 1.1
B -1.1
D 2.6
D quadratic -.6
E -1.3
F 3.2
G -6.8

Interactions
AB .3
AD -.8
AE .5
AF -.5
BD 1.1
BE -.5
BG .3
DE 1.2
DG -.6
EG .4

37

A Confirmatory Experiment

Point

0002111
0021111
0100010
0101000
0101010
0112100
0121111
0221011
0222122
1002101
1002122
1011220
1012110
1021020
1122121
1212112
2020112
2120022
2120200
2221122

Predicted responses

147.03 3.12 42.18 0.19
145.72 5.52 53.92 1.27
148.98 5.75 61.59 2.92
150.45 4.25 50.73 0.78
153.57 4.18 49.94 0.62
150.58 4.12 48.49 0.49
144.40 5.67 56.55 1.86
145.19 5.69 53.22 1.73
142.72 5.43 45.88 1.33
144.51 3.44 43.03 0.27
142.58 2.74 39.39 -0.15
156.64 5.87 59.62 1.97
155.21 4.35 46.15 0.42
158.75 5.92 50.42 0.80
150.08 5.84 46.75 1.13
140.17 4.05 44.98 0.49
138.50 7.49 64.60 4.78
141.60 7.38 61.06 4.84
144.36 9.43 81.65 8.80
142.67 6.99 56.39 3.64

Observed responses

146.84
145.55
149.12
150.28
153.50
151.03
144.66
145.04
141.88
143.85
142.88
157.07
155.08
157.81
150.21
132.53
141.32
143.58
142.36
139.84

3.07
5.49
5.79
4.33
4.33
4.00
5.57
5.52
5.09
3.24
1.64
6.11
3.35
6.08
5.80
9.88
7.12
9.70
6.60
3.84

42.02
54.02
61.89
50.72
49.95
48.61
56.66
52.91
45.44
42.72
33.78
59.75
39.35
50.44
46.55
82.66
61.18
81.88
56.06
44.80

0.27
1.53
2.91
1.00
0.98
0.67
1.97
1.79
1.09
0.31
0.07
2.13
0.25
1.40
1.16

12.01
4.00

10.13
2.72
0.63

That the fitted model works well for the original design points is not surprising. The real
question is whether the model works just as well for the 98% of the full factorial that is not part
of the experiment. A test protocol was set up and followed exactly. Twenty points of the full
fac onal that were not contained in the original experiment were selected by using a published
table of random numbers. Predictions were made using the model and simulations were run to
get actual values of the four responses. The results are in the table above.

A meaningful comparison of the two sets of results may be obtained from the residual
error of the responses from the first experiment, each having 8 degrees of freedom in the
statistical sense, with the root mean square differences of predicted and observed from the
confirmatory experiment, with 20 degrees of freedom. These are given in the table below

Response Customers Max Queue Utilization Ave Wait
Residual (original experiment) .545 .239 .256 .192
Prediction - Actual

===== ■

.457 .200 .214 .494

The conclusion is that the experiment design gave very good results for the first three
responses and pretty good results for the fourth. The reason the fourth response is not better is
hat its vanabihty increases with its value. The logarithm of waiting time could be used instead

to achieve more stable results.

38

A Scenario for Implementation of Experiment Design

The use of experiment design as illustrated appears to enhance the use of simulation
models. In particular, it gives the analyst a good understanding of the behavior of the simulation
model over a great number of combinations of inputs without actually running all the cases. We
will explore briefly how it might be implemented in a semi-automated fashion.

Suppose that runs of a simulation model are set up and initiated by means of an
interactive interface. The user may be presented with screens that request values for any key
control parameters, and menus of sets of input parameters by means of which the user can
establish default values, or change values for a particular run. Such a system could be extended
to treat the interface with the experiment design. The user would be asked to specify which input
variables are to be studied in the experiment and the levels for each. Output variables of primary
interest for interpreting the results would also be specified. The user might also be given options
as to how the results of the experiment are to be presented, such as raw estimates of effects and
interactions, fitted value tables, plots, or estimated maxima.

The system would then take over and set up a series of simulation runs according to an
experiment design established internally. The random number generation scheme for the basic
simulation model would have been set up so that all random number draws are synchronized for
each Monte Carlo replication of the model. In the phone help line simulation different strings
are used for determining the number of servers absent, customer arrivals, queue balks, and service
times. Random number synchronization is required for making meaningful comparisons between
runs of the designed experiment.

Because many of the input parameter values are the same from one point to another in
the experiment design, many of the same computations are done repetitively from one case to
another. It should be possible to structure the simulation to take advantage of this fact. If an
input variable is used only in a function subroutine, for example, then the subroutine could be
modified to store its computed output value for each input used. At each call it would first check
to see if it had been already done the requested computation, and if so just feed back the stored
value. Restriction of the design to the factorial structure may mean that very few different values
are actually used. It should be noted that use of an object-oriented approach to the simulation
development, or at least a modular structure, would facilitate this saving.

39

7. OTHER GENERAL APPROACHES FOR INCREASED EFFECTIVENESS

The original thrust of the current effort was to examine approaches that might be
generally applicable across a wide variety of simulations. It soon became apparent, however that
the techniques under examination could only be made effective by introducing approximations
or decreases in fidelity. The work was therefore abandoned in favor of more promising efforts
borne of the techniques considered might still be useful for other types of simulations.

Scaling

The idea of scaling is used throughout scientific investigation. It is feasible to observe
a small number of entities and their interactions by a single scientific investigator. The scientist
then tries to generalize to systems consisting of larger numbers of entities. If interactions are
tew, then the seal.ng approach works: a dairy with 10 times as many cows will produce 10 times
as much milk Scaling is hopeless for some applications because of the complexity of the
interactions, the two-body gravitation theory being an example.

Scaling was tried with the phone-line model described on page 36. The size of the model
was increased by scaling up from 3 to 30 customer service representatives, and by increasing the
number of cus omer arrivals correspondingly, in this case by dividing the interarrival rate by 10.
Not surprisingly, the number of customers served per day did scale well. The average waiting

^Th^KnOL ■ ger m°del 3 SerVer W3S much more ,ikely to become liable quickly
so that the waiting times were shorter and their distribution showed less spread. No genera
conclusions were reached, except that scaling is a complex issue.

Inverse Validation

realitv S^Ulati°n Va"dation ^thodology is used to determine how well a simulation matches

tLÄ WC f eXTg SimU,ati0n that h3S been va,idated but that we would like
themode^i Jhteh WH6 m,g, ?Se ?e reSU,tS °f thC Validati0n process to detemine what Part» of the model might be degraded without significant sacrifice of fidelity.

«v«il»w?f idelhlre 1S.t0 USC a decomP°sition of the model into submodels for which data are

ZtaJae^t lu $yT 3nd thC SimUlati°n- In SUCh 3 SitUation' the validati- of the overall model might be based on metrics that were weighted sums of metrics for submodels As
a system is developed, test data are often obtained for components and subsystems longbefore

oTsubt-t0t makf6 I"' tCStS °n thC Wh0,e SyStCm- The S'Stem model ^ then befpeeded up by substituting faster running submodels for those that are slow running but of greater

sZcte thethan-need
f
ed

h
f0r thC °Vera11 SimUlati°n- The inverse validation^nciplewoud structure the choice of where to compromise fidelity.

When an engineering simulation model is developed in parallel with the system
development, it is common to have submodels of varying degrees of fidelity. Rather than

XTfidehtv I1 y °fti
h0Se tHat 1 hjgh'thC Spirk °f enginee^SSimu,ati°^ to ,e-them

W'mighl be^r tyPCS °f SimU,ati°nS' SUCh " SyStCm effeCtiveneSS m0dels' ^

40

Staged Aggregation

A communication system simulation is characterized by having a large number of entities
of the same or similar types that are all linked together. A simple example is a system consisting
of many terminals that send messages to each other. If the system is to be simulated, the
straightforward approach is to simulate each terminal and the individual messages between them.
As the system grows in size, the size and corresponding run times of a simulation grows in a
combinatorial fashion.

Aggregation may be applied to combine entities into groups of small size. The result
might now be considered a higher-order building block. Then further growth is modeled by
linking these next order building blocks, and the process repeated for a few stages. Thus, for
example, rather than modeling a system of 1000 terminals, the system is represented as 10
supersets of 10 groups of 10 terminals.

Continuing this reasoning, the system
consists of a small subsystem, operating in
parallel and interacting with many replicas of
itself. The corresponding modeling approach is
to represent the subsystem in terms of its own
internal transactions, together with interactions
with its replicas. Thus, for the networked
terminal model the subsystem model would
explicitly account for messages sent and
received within itself, the messages sent to
other replica subsystems, and the messages
from other replica subsystems.

As part of this contract, some work was
done on a network model to test out this idea.
One node in a network initiates a message that
it sends to its neighbors, who relay the message
on. Fortran simulation models were written to
compare levels of aggregation up to the third
level (figure), but the complexity of the
aggregated models seemed to increase faster
than the potential savings and most results were
negative. The work done is summarized in
Appendix G.

STAGED AGGREGATION

LLLL

Nodes Treated Individually

First-Level Grouping

t t

1 I * l"*! I 1

» 1

1 1 1 1 — 1 1 1

,

Second-Level Grouping

41

8. RECOMMENDATIONS AND IMPLEMENTATION PLAN

Random Number Synchronization

It is recommended that a random number synchronization scheme be implemented for
CECOM simulation models, including SPM in particular. This is easy to do and can be done
by those who routinely maintain the models following the procedure given on page 32.

With a synchronization scheme implemented as indicated, one seed controls the generator
that produces the seeds for the generator actually used during the simulations. It is recommended
that that seed be a user controlled input parameter. If a specific seed is to be used in the current
SPM implementation, code must be recompiled.

If synchronization is not implemented, then separate runs should be made with different
seeds. This is to avoid the situation in which runs are essentially the same for awhile, then
diverge after random number synchronization is lost. Meaningless comparisons might result as
discussed on page 24. The technique used in SPM of setting the seed by the low-order bits of
the system clock is effective and should be retained.

If synchronization is not implemented, then the option of using statistically generated
input message generation should not be used for cases to be compared to each other. The input
should be generated offline, using the statistical technique if desired. The resulting message set
should then be used as a scripted input for the actual simulation cases. This is because of the
strong dependence of a communications simulation on the input traffic. In fact, for many such
simulations most of the benefit of the random number synchronization technique might be
achieved by using scripted inputs.

Other Recommendations

An automatic timing system should be introduced into simulations. This can be done by
calling the system clock when each major procedure is initiated, again at the end, and cumulating
the time increments so obtained. The total time in each procedure should then be printed as part
of the simulation output. Timing data can be refined for those procedures that use the most time.
The resulting data will be useful in directing future efforts at optimizing simulation run time.

Although the current random number generator in SPM is judged to be adequate, it is not
the best generator available. Its replacement with a proven generator would add to credibility
The generator called GEN_H or GEN_A in Appendix B might be good choices here, subject to
further testing. The best generator studied, GEN_K, is more difficult to initialize because it
stores intermediate values internally, and incidentally requires more computer time.

An automated system to set up simulation cases following a statistical experiment design
should be pursued. The usefulness of this step is contingent on having a random number
synchronization scheme in place. Details need to be worked out including what the experiment
designs should be and what the user interface should look like. A better generator is strongly
suggested as an adjunct to an automated experiment design capability.

42

Implementation Plan

It is frequently suggested that a follow-on contract would be the best vehicle for
implementing recommendations arrived at in a study. In this case, however, most of the
implementation can be done by those responsible for the model and those performing routine
model maintenance. It is assumed that SPM is the intended target for implementation, but other
models could be used just as well.

First, two interim operating procedures should be established applicable to production runs
with the SPM. A production run is any that will contribute to analyses or that will be used as
the basis for decisions. Different cases should use different random number seeds. Generation
of the input message scenario should be done offline and the result used as a scripted input that
is archived. Even if no comparisons are contemplated with a particular case, the script is
available should a later comparison need to be made.

Second, synchronization of the random number draws should be implemented. The first
step is to identify all random number draws and associate with each an entity type, entity
number, and purpose. In performing this association, it is important to separate cases in which
different numbers of draws might be made depending on different input parameters or on
different conditions. If the same number of draws will always be made, then purposes may be
lumped together.

The actual coding phase follows the procedure outlined on page 32. This involves a new
random number provider that accepts indices, an array of seeds, an initialization procedure, and
two independent random number generators. All calls to the existing random number generator
(in any form) are replaced by calls to the new random number provider. For SPM this will
involve replacing the calls to Uniform, Expon, Texpon, Normal, and Tnormal with new
equivalents. Random number draws should be moved back before IF structures so that the same
number of draws will always be made.

Testing would include tests that the procedure is implemented properly and also regression
testing in which inputs are set up to match old cases that have been studied in the past. Tests
would also be made with parameters changed to verify that close comparisons are now possible.

Once synchronization is in place, the single seed that drives the random number generator
that fills the seed array for the other generator should be made part of the user input, and no
longer generated via the system clock.

As a separate effort, timing instrumentation should be added to the code so that in the
future efforts to increase running speed can be concentrated on the routines that use the most
time.

A facility for automating the running of statistical experiment designs appears to offer
potential benefits. Further study of implementation details, particularly the analyst interface, and
the benefits using it are required.

43

APPENDIX A - VALIDATION METRIC ROUTINES

Validation of a simulation model is often based on a comparison between data from a test
of the real system and corresponding data from the simulation. Metrics that express the degree
of agreement have been developed and were implemented in the form of computer routines for
use in validating SPM. Details of the theory, routines, and testing are given in this appendix.

A Metric for Binomial Data

Statistical procedures are available for testing hypotheses about whether two binomial
proportions are equal, or for establishing confidence intervals on single binomial proportions.
Methods do not seem to be readily available, however, for determining the confidence with which
two proportions lie within a specified interval. A procedure was developed for this purpose.

If the unknown probability of success on any one trial is viewed as having a probability
distribution which is uniform between zero and one before data are obtained, then after observing
K successes in N trials, the parameter p has a beta distribution. Specifically, the posterior
probability that p is less than any value x between 0 and 1 is given by

Pr{p < x} = (N + 1) (£) f tK (l-t)N"K dt.
o

The figures given on page 15 show the shape of the probability density for representative values
of N and K. In particular, for small N the density varies slowly and is significantly above
zero for much of its width. For large N, however, the density is extremely peaked, but has
negligible values except near the peak.

Using this approach, the probability that two binomial proportions pt and p2 are within
±d of each other can be calculated from a convolution of two beta distributions. This can be
expressed symbolically as Pr{pt = y} x Pr{y-d < p2 < y+d}, integrated over all possible values
of y. Evaluation of this expression involves an outer integration from 0 to 1 of the density of
pt, obtained from the above beta expression using Nt and Klt and an inner integration between
y-d and y+d of the beta density using N2 and K2.

The numerical evaluation of this expression over wide ranges of the five parameters is
challenging. The integrals are replaced by summations with finite step sizes used for the
infinitesimals dy and dt. The step sizes used must be small enough to give satisfactory
accuracy, but not so small as to give unacceptably large computation times. If N is small, a
fairly large integration step size will give accurate results. If N is large, however, the density
is very peaked and a small step must be used. On the other hand, the density is negligible over
part of the range. In any case, the densities are unimodal.

These features have been taken advantage of in several ways:

44

• If the density in the outer integral is so small that the resulting term will be
negligible, then the inner integration is skipped.

• If the contribution of the current term of the outer integrations is a small
fraction Et of the total already achieved, then the process is terminated.

• If the contribution of the current term to the outer integration is a small fraction
e2 (larger than ej of the total, then the integration step size for the inner integral
is increased by multiplying by 2, up to a limit of 26.

• The direction of integration is controlled so that the peak of the density is
treated first and the long tail last.

A second problem is the evaluation of the binomial coefficients for N things taken K
at a time, which is equal to N! / K! (N-K)!. If N is large then this expression will cause
computational overflow except when K is close to N or 0. The approach used is to make a
preliminary check to see if the expression will be large, and if so, then use an alternative
computation based on the Gaussian approximation to the binomial. The Gaussian approximation
does not involve explicit integration, and is very fast.

A Fortran routine using these features, called BETALIM, was sent to John Wray of
AMSAA for his evaluation. The basic integration step size was set to .0001. On a 486 computer
(at 33MHz) it took 44 seconds to solve 10, 9, 10, 9, .01, but only a couple of seconds to solve
200, 200, 200, 200, .01. The accuracy of the first seems to be about .0002, but of the second
only .01. If the step size is decreased to .00001, the accuracy is better but the times are
increased by a factor of about 60.

A further problem found by Wray was that the program stopped with an exponentiation
error when K was equal to N. This is probably due to a compiler difference in the treatment
of 0° when evaluating the density.

A second version, called BETALIM2, was created and also sent for evaluation. It treats
the 0° case specially, uses a variable step size depending on the larger value of N, and uses
the more accurate Simpson's rule for the inner integration rather than the trapezoidal rule. The
technical control parameters were tuned to attempt to give 3-place accuracy to the result over
wide ranges of the inputs. A test case was constructed with 13 sets of inputs, based on a sample
data set provided by Wray. NL and N2 were equal, ranging from 116 to 2190, Kt and K2

were also equal, ranging from Nt down to Nt - 2, and the indifference interval d was .05.
This test case took 22 minutes and 34 seconds on the 486 computer. The indifference interval
of .05 is large (all the computed probability levels are essentially one), and smaller values would
take less time.

Further examination of the large-sample approximations used is in order. The test made
is based on an approximation to the Stirling approximation to the factorials in the binomial
coefficient; specifically, the quantity TEST given by

45

TEST = NlnN-KlnK- (N-K) In (N-K)

is compared with a threshold value, currently set to 50. For values of N less than 73 this
results in the exact formulas being used. For larger values of N the region for which the
approximations kick in is given by central values of K:

N = 75
N = 80
N = 100
N = 200
N = 10,000

K between 30 and 45
K between 26 and 54
K between 20 and 80
K between 14 and 186
K between 6 and 9994.

It should be noted that the region is a function of both N and K, and not just applied when
N is large.

A further refinement, BETALIM3, incorporated separate calculation of step sizes for the
two integrations, and more accurate large-sample approximations. Unfortunately, it proved to
have some numerical problems, so it was withdrawn from consideration in favor of BETALIM2.

An accuracy statement is given by Mood [1950] for the Gaussian approximation to that
of the binomial proportion. The statement is made that the error is less than .15/V Npq
(where p is the true underlying probability of success and q is 1 - p), provided that Npq
is greater than 25. Although this sounds accurate, it really isn't. The values of N p q at the
border between where the exact formula or approximation is used range from around 18 at
N = 75 down to HVi for an N of 300, on down to 6 for N = 10,000. A check of values
chosen along the boundary in such a way that the first sample would use the integration and the
second the approximation was made using both BETALIM2 and BETALIM3. The results are
in the following table, rounded to 4 places from the original output.

Ni Ki N2 K2 d BETALIM2 BETALIM3 Difference

73 49 73 41 .02 .0806 .0803 .0003

74 49 74 73 .02 .1208 .1214 -.0006

75 49 75 46 .02 .1783 .1808 -.0026

80 59 80 54 .02 .1515 .1543 -.0029

130 119 130 113 .02 .2020 .2092 -.0073

200 191 200 186 .02 .3768 .3941 -.0172

300 295 300 288 .02 .3997 .4170 -.0173

This study is too limited to be definitive, but gives an indication of possible accuracy.

46

A Metric for Delay Time Data

Because the message delay time data are continuously variable rather than restricted to
two values, a different processing procedure was required. Several different formulations were
tried for judging whether a particular arrangement of X's and Y's is more extreme than the
actual one observed.

The original approach developed under an earlier contract was intended for the case in
which only a few observations were available from the real system. The procedure is based on
the assumption that the two populations have the same distribution except for a location
parameter. First we assume that there are two observations available from the real system and
any practical number from the simulation.

Let X„ X2, ... , Xm be an ordered sample of results for a single response from the
simulation, where m is large; let Yt, Y2 be an ordered sample of size 2 from the real system.
Assume that the random variable Z = Y + 9 has the same distribution as the X's. Then all
possible permutations of the m + 2 variables consisting of the X's and Z's are equally likely,
each with probability 1 / B(m+2,2), where B(n,r) is the notation for the binomial coefficient
of n things taken r at a time. By counting arrangements we find

Prob{Z! < XJ = (m-i+2) / B(m+2,2), and Prob{Z2 < X} = i / B(m+2,2).

These can be used to make confidence statements about 6 of the form Prob{8 < X; - Yj}.

If the indifference zone on 6 is ± d, then the set of differences is searched to find
values of i and j for which - d s X(- Yj, and for which X-, - Yj s + d. The probabilities
are evaluated from the above formulas, and the difference taken to bound the confidence with
which 8 lies between - d and + d. The choices are made to maximize this difference.

This original formulation had the disadvantage that if the roles of X and Y are
reversed, a different answer is obtained. A second problem was that the answer also changed
if all data were subtracted from 100, but an adjustment was formulated that corrected this
problem.

An alternative formulation considers counts of all possible arrangements for which all the
Y ranks are less than or equal to those observed. This formulation does have symmetry if the
roles of X and Y are interchanged, but presents a more challenging counting problem. An
innovative recursive approach was formulated, but is an alternating summation of terms of
alternating sign. The numerical errors inherent in this approach prevent correct computation for
sample sizes n greater than about 15 or 20.

The approach finally selected uses the Mann-Whitney U statistic, which is a count of the
number of instances in which a member of the second sample is less than a member of the first.
The value of U can range from 0 if all the observations in the second sample are greater than
any in the first, to Nt x N2 if all are less than any in the first. If two samples are very
different, then U will have a value close to one of these extremes. If they are the same, then

47

U will probably have a central value. If a sample of Nt X's is really from the same population
as a second sample of N2 Y's, then if all the Nt + N2 observations are sorted, then any
particular pattern of X's and Y's is equally likely to occur. The probability distribution of
U in this case can be computed from a recursion relationship giving the number of possible
arrangements of Nt X values and N2 Y values that give the same value for U. Assume for
definiteness that N2 s NL. If N2 = 1, then there is just one arrangement of the N, X values
and 1 Y value with each of the possible values of U from 0 to Nv Let the notation MW(u;
N1? N^ be the number of arrangements that give the value u for the statistic U. Then the
recursion is

MW(u; N„ NJ = MW(u; N,-l, N2) + MW(u-N,; N„ N2-l),

where MW(u; N„ NJ is interpreted to be 0 if u < 0 or if 1^ or N2 is less than or equal to

For large values of Nt and N2 a Gaussian approximation is available. This is based
on the asymptotic distribution, but is considered to be "reasonably" accurate for equal sample
sizes as small as 6.

The derivation thus far assumes that the measured values are from a continuous
distribution, so that ties do not occur. In practice, values are only recorded to some number of
significant digits, and ties may occur. The statistic U may be modified so that each time a Y
is less than an X, 2 points are scored, and if a Y is tied with an X, 1 point is scored. With
this formulation, U may range from a minimum value which is again 0 to a maximum which
is 2 Nt N2.

To form a metric giving the confidence that two samples represent populations that are
within an indifference ± d of each other in location parameter, the U statistic is computed
twice using the second sample values with d added and subtracted. The values of U are
compared with the percentage points of its distribution to obtain values that are differenced to
form the final metric.

A Fortran routine called METRIC7 was developed implementing this procedure and sent
to AMSAA for evaluation. Only the large-sample approximation was implemented for the initial
delivery. Another version, METRIC8, was developed that improves the large-scale
approximation slightly, but more importantly adds the exact computation for cases in which both
sample sizes are less than 20. This routine works by building a table of the exact distribution
which is referenced for particular values of U. Attempts were made to develop a version that
would use the recursion relationships to obtain distribution values as they are needed. If
successful, this approach could have covered the cases when only one sample size is less than
20. The implementation involved making a procedure call for each term in the recursion, so that
a deeper and deeper stack of calls was made as the evaluation proceeded. The attempts failed
to achieve results in reasonable amounts of computer time except for small sample sizes, for
which METRIC8 could be used. Therefore the approach was abandoned. The case in which'one
sample size is less than and one greater than 20 occurs rarely if at all for the EPLRS data, so
METRIC8 was used for the data reduction for the VV&A effort.

48

APPENDIX B - RANDOM NUMBER GENERATOR TESTS

The Tests

A battery of tests for random number generators was constructed as follows:

• Rantest - Inspection. Prints out the first three uniform draws and corresponding seeds
for the generator under test.

• Rantest2 - Cycle Length. Makes up to 30,000 draws and checks each successive seed
value against a stored list of the last 20,000 seed values. Impractical to use.

• Rantest3 - Pair Uniformity. Draws 20,000 pairs and sorts them into a 64 x 64 grid,
then makes chi-square test for uniformity.

• Rantest4 - Gaps. Tests distribution of 7000 gaps of length up to 70 successive draws,
where the gap intervals are 0.0 to 0.1, .15 to .25, .45 to .55, .75 to .85, and .9 to 1.0.

• Rantest5 - Permutations. Draws 5000 sets of 6 numbers and classifies which of 720
permutations their ordering falls into.

• Rantestö - Runs. Classifies 40,000 runs of increasing size of length up to 8; that is ,
if X(< X2 < X3 > X4, then the run is of length 3.

• Rantest7 - Overlapping Triples. Sorts 30,000 numbers (in circular string) by which bin
of an 8 x 8 x 8 grid each successive triplet falls into (a Marsaglia 'stringent' test).

Fortran listings of tests 3 through 7 are given later in this Appendix.

The Generators

The tests were applied to a set of 14 random number generators, for which listings are
also given later. These are:

• UNIF - Park & Miller generator as given by Kruger [1990].
• UNIF2 - Portable generator given by Bratley [1983].
• GEN_A - This is a portable generator written by Robert Guy (currently with Kaman
Sciences Corporation in Colorado Springs) to emulate the generator RAN used in the
Fortran library of the VAX 11/780 (called RANX by Guy).
• GEN_B - Full precision implementation of a linear congruential generator (LCG) with
a = 3141592653 and c = 2718281829, given as Generator B by Knuth [1969, p 40]
apparently as an example of an arbitrary choice of constants.
• GEN_C - According to Knuth this and GEN_D have been discussed in the literature,
but they perform poorly because their multipliers are too small.
• GEN_D - The multiplier of 23 is much too small.

49

PARAMETERS FOR CONGRUENTIAL GENERATORS

Generator a c m

UNIF 16807 0 231-1

UNIF2 16807 0 231-1

GEN_A 69069 1 232

GEN_B 3141592683 2718281829 235

GEN_C 129 1 235

GEN_D 23 0 108+ 1

GEN_F 262145 1 235

GEN_G 16807 0 232

GEN_H 630360016 0 231-1

GEN_I 62605 0 229

GENJ 69069 0 232

GEN_L 65539 0 231

• GEN_E - A Fibonacci generator without lag; that is, Xn+1 = Xn + X,^. This formulation
is known to give poor results.
• GEN_F - A generator with a = 218 + 1, which can be shown to be unsatisfactory from
number theory.
• GEN_G - A naive (incorrect) implementation with a = 16807 (same as UNIF and
UNIF2).
• GEN_H - This multiplier is used in SIMSCRIPT II.5 and in DEC-20 FORTRAN
according to Bratley [1983].
• GEN_I - Generator with a = 62605 used in the Berkeley Unix Pascal generator and
found by Marsaglia [1985] to be "not so good" on a stringent test not used here.
• GEN_J - Uses a multiplier given by Marsaglia as a "failure bordering on the
spectacular" for a stringent test.
• GEN_K - Marsaglia's combination generator using a multiplicative Fibonacci type and
a difference lag-1 Fibonacci, combined by difference.
• GEN_L - An implementation using the multiplier 65539 used in the infamous IBM
generator called RANDU.

Testing Procedure

Each generator was tested with the following set of 23 initial seeds:

Beginning integers: 0, 1, 2, 3, 4.
Choices the author has often used: 123456789, 1111111, 6999.

50

Powers of 2: 65536, 16777216, 1078741824.
Powers of 10: 10, 100
More choices sometimes used: 194305786, 1217344457, 314159276, 543219876, 9571916,
5868958.
Choices made by Bratley et al: 1234567890, 1933985544, 2050954260, 918807827.

The seed 1078741824 was used mistakenly; the 30th power of 2 is really 1073741824. The
congruential generators with c = 0 do not work with the seed 0, so it was omitted for them.

The Rantests were not written with a general call, but must be edited to change the
generator call to the specific one to be tested, then recompiled. A general facility using string
manipulation might be desirable here.

Most of the tests took about a minute of computer time on a 486, with the range being
20 seconds to 2 minutes. The combined generator GEN_K usually took almost twice as long as
the others. This is not surprising, since it effectively combines two separate generators.

Verification Testing on the Rantest Routines

Rantest3

For this test 300 pairs of numbers using generator GEN_K and seed 2 were sorted into
a 10 x 10 grid. Categorization was hand checked. Computation of chi square was checked.

Rantest4

This test looked at 20 gaps of length up to 10 using generator GEN_A and seed 2. Only
the .0 to .1 and the .9 to 1.0 gaps were checked (these were easiest to hand count). The counts
agreed; the computation of chi square agreed; the P values seemed good with a rough table
lookup using the 9 degrees of freedom (formula assumed > 30 df, but still looked like about 3
places accuracy).

Rantest5

A special run was made with 100 sets of 4 draws, using generator GEN_B and seed 2.
With each draw was printed the permutation number, of the 24 possible. It was verified that
numbers were assigned uniquely to permutations. These were as follows:

dabc cdba cadb cabd dcab bdac bcda bead dacb bdea bade bacd
1 2 3 4 5 6 7 8 9 10 11 12

dbac cdab cbda cbad deba adbc aedb acbd dbca adeb abdc abed
13 14 15 16 17 18 19 20 21 22 23 24

The counts of these were hand checked. Computation of chi square was verified.

51

Rantest6

A special run was made with 100 runs of length up to 4, using seed 2 with GEN_L. The
results were hand checked to compare with the run distribution obtained by the software. Runs
were 49 of length 1, 24 of 2, 22 of 3, and 5 of 4 or more. The probabilities of runs of these
lengths are 1/2, 2/6, 3/24, and 1/24. Chi square value is 10.02, which checks. Degrees of
freedom = 3. x = 3.1654384, Z(x) = .0026613, P(x) = .999223, P value = .01840 by hand
computation using the odd degree of freedom formula programmed and interpolation in table for
P(x).

Random Number Generator Listings

FUNCTION UNIF2(IX)
INTEGERS IX, Kl

C

C PORTABLE RANDOM NUMBER GENERATOR FROM BRATLEY, FOX & SCHRÄGE p319
C
C USES IX = 16807 * IX MOD(2"31 -1)
C PROBABLY REQUIRES DECLARATION INTEGERS IX, Kl
C
C INPUT: IX = INTEGER > 0, < 2147483647
C
C OUTPUT: DC = NEW RANDOM INTEGER
C UNIF = UNIFORM FRACTION BETWEEN 0 AND 1
C

Kl = IX/127773
IX = 16807 • (IX - Kl*127773) - Kl • 2836
IF (IX .LT. 0) IX = IX + 2147483647
UNIF2 = IX * 4.656612875E-10
RETURN
END

REAL FUNCTION UNIF(1SEED)
C
C PARK & MILLER GENERATOR. FROM KRUGER: EFFICIENT FORTRAN PROGRAMMING
C

INTEGERM KA KQ, KR M, ISEED
INTEGERM KHI, KLO, TEST
DATA KA /16807/, M /2147483647/, KQ /127773/, KR /2836/

C
KHI = ISEED / KQ
KLO = MOD(ISEED.KQ)
TEST = KA*KLO - KR'KHI
IF (TEST .GT. 0) THEN

ISEED = TEST
ELSE

ISEED = TEST + M
END IF
UNIF = REAL(ISEED) / REAL (M)
RETURN
END

• •(■••«»••««(••(••(•••(•»••••••••^•■••••••••••••■•»•••••••••••(••ItlltltltXX

FUNCTION GEN_A(ISEED)
C WRITTEN BY BOB GUY AS RANX TO EMULATE THE VAX ROUnNE CALLED RAN

REAL*8 RAND
REAL*8 XSEED.YSEED
INTEGERS ISEED

C PARAMETER CNST = 69069.D0
DATA CNST/ 69069.0D0 /

52

XSEED = ISEED
IF (XSEED .LT. O.DO) XSEED = XSEED + 2.DO *• 32
YSEED = (XSEED'CNST) + l.DO
XSEED = YSEED -(ANINT(YSEED /2.DO**32) * 2.DO**32)
IF (XSEED .LT. 2.DO**32) THEN

ISEED = INT(XSEED)
ELSE

ISEED = INT(XSEED - 2.DO"32)
ENDIF
XSEED = INT(XSEED /256.D0)
RAND = XSEED / (2.DO*,24)
IF (RAND .LT. O.DO) RAND = 1.DO + RAND - 5.9064645D-8
GEN_A = RAND

C RANX = RAND
C wrile(3,'(f9.7)*) ranx

RETURN
END

»»««••••««*«*•*•♦»*•♦****»»•••**»*♦*«**«**••»♦*»•••*»•*»***•*****•**************

REAL*8 FUNCTION GEN_B(ISEED)
INTEGERM ISEED
REAL'8 A C, XMOD, YSEED, XSEED
DATA A / 3141592653.D0 /, C / 2718281829.D0 /
XMOD = 2.D0 •• 35
XSEED = ISEED
IF (XSEED .LT. O.DO) XSEED = XSEED + 2.D0 •* 32
YSEED = DMOD(XSEED*A + C, XMOD)
ISEED = INT(YSEED)
GEN_B = YSEED / XMOD
RETURN
END

«»»•»•»«•••«*»«*«•*•*••»«»«•••«»«»••**»*»»••»»*•»••*•*»•»•»•**»*»»•****•***•**♦*

REAL*8 FUNCTION GEN_C(ISEED)
INTEGERM ISEED
REAL*8 A C, XMOD, YSEED, XSEED
DATA A / 129.D0 /, C / l.DO /
XMOD = 2.D0 *• 35
XSEED = ISEED
IF (XSEED .LT. O.DO) XSEED = XSEED + 2.DO ** 32
YSEED = DMOD(XSEED*A + C, XMOD)
ISEED = INT(YSEED)
GEN_C = YSEED / XMOD
RETURN
END

«»«»••«*«*••«««•••»•««••*«••«•«»•»•««**»*«»•*♦»*****»»»*«**•••••»*•*•»*»*****»**

REAL»8 FUNCTION GEND(ISEED)
INTEGERM ISEED
REAL*8 A, C, XMOD, YSEED, XSEED
DATA A / 23.DO/, C/O.DO/
XMOD = 10.DO"8 + l.DO
XSEED = ISEED
IF (XSEED .LT. O.DO) XSEED = XSEED + 2.D0 ** 32
YSEED = DMOD(XSEED*A + C, XMOD)
ISEED = INT(YSEED)

C WRITE(3,99) XMOD, XSEED, YSEED
C 99 FORMAT('DEBUG XMOD, XSEED, YSEED',3F12.1)

GEN_D = YSEED / XMOD
RETURN
END

»«♦«»»»»•»•»•«»*»*»»•»»*♦••••*»»*»•*•••»»«•»••»»••»»»»**«•»*•****♦*********"**•

REAL*8 FUNCTION GEN_E(ISEED)
C FIBONACCI GENERATOR

INTEGERM ISEED
REAL*8 A C, XMOD, YSEED, XSEED
DATA A / 3141592653.D0 /, C / 2718281829.D0 /
XMOD = 2.D0 ** 32

53

XSEED = A
A = ISEED
IF (A .LT. 0.DO) A = A + 2.D0 •• 32
YSEED = DMOD(XSEED + A, XMOD)
ISEED = INT(YSEED)
GEN_E = YSEED / XMOD
RETURN
END

•««•••••••••••MM »**•♦«»««•»**♦»»*♦«***»♦««*«•••«*»*«**•♦«»«»*«««»«««»««««»».»»

REAL'8 FUNCTION GEN_F(ISEED)
INTEGERM ISEED
REAL*8 A, C, XMOD, YSEED, XSEED
DATA A / 262145.D0 /, C / 1.D0 /

C AIS2**18 + 1
XMOD = 2.D0 •» 35
XSEED =ISEED
IF (XSEED .LT. 0.D0) XSEED = XSEED + 2.D0 ** 32
YSEED = DMOD(XSEED*A + C, XMOD)
ISEED = INT(YSEED)
GEN_F = YSEED/XMOD
RETURN
END

*♦»«***»*»••••»**•»»»*••»♦»»»»»•«•**»«»•»«««»»««»««»»,»«««,,„,„„„„,„,„,„

FUNCTION GEN_G(ISEED)
C

C THIS AND NEXT ARE IMPLEMENTATIONS OF MULTIPLIERS MENTIONED BY
C BRATLEY et al ON p 184. THIS ONE IS USED IN APL, IMSL AND SIMPL/I
C

INTEGERS ISEED
DATA A / 16807. /
XMOD = 2147483647.D0
XSEED =ISEED
IF (XSEED .LT. 0.D0) XSEED = XSEED + 2.D0 •• 32
YSEED = DMOD(XSEED*A XMOD)
ISEED = INT(YSEED)
GEN_G = YSEED / XMOD
RETURN
END

••*•**•••••••••• ••••♦*••••»*.*«♦,.•»♦,»„«»»,,,,»»,„, ♦»»*.»*♦♦«»*»»»»,»»»«,♦»„

FUNCTION GEN_H(ISEED)
C

C THIS MULTIPLIER IS USED IN SIMSCRIPT II.5 AND IN DEC-20 FORTRAN
C

INTEGERS ISEED
REAL*8 A XMOD, XSEED, YSEED
DATA A/630360016. /
XMOD = 2147483647.D0
XSEED = ISEED
IF (XSEED .LT. O.DO) XSEED = XSEED + 2.D0 ♦* 32
YSEED = DMOD(XSEED*A XMOD)
ISEED = INT(YSEED)
GENH = YSEED / XMOD
RETURN
END

• ••••••••••••••••••MMMMtM •♦••••••••»••»•••••*•••••»•••«••»««•••••,•#••»»»•»

FUNCTION GEN I(ISEED)
C

C MENTIONED ON p 7 OF MARSAGLIA. BERKELEY UNIX PASCAL. NOT SO GOOD
C

REAL*8 A XMOD, XSEED, YSEED
INTEGERS ISEED
DATA A / 62605. /
XMOD = 2.D0 ** 29
XSEED = ISEED
IF (XSEED .LT. O.DO) XSEED = XSEED + 2.D0 ** 32

54

YSEED = DMOD(XSEED*A XMOD)
ISEED = INT(YSEED)
GENJ = YSEED / XMOD
RETURN
END

.»««♦•••»»**••»««*«•»»*••»»»♦••»»•«•♦•*♦*•*»»»**»•♦♦**»♦***•********************

FUNCTION GENJ(ISEED)
C
C MENTIONED BY MARSAGUA ON p 7. "SPECTACULAR FAILURE"

C
REAL*8 A XMOD, XSEED, YSEED
INTEGER*4 ISEED
DATA A / 69069. /
XMOD=2.D0**32
XSEED =ISEED
IF (XSEED .LT. 0.D0) XSEED = XSEED + 2.D0 ** 32
YSEED = DMOD(XSEED*A XMOD)
ISEED = INT(YSEED)
GENJ = YSEED / XMOD
RETURN
END

»««♦«««•»»*«♦«»•••«♦**«»****••••*♦«*»•«*»••*•«♦»»»•»»**♦••»♦***»•***************

FUNCTION GEN_K(ISEED)
C
C COMBINATION GENERATOR COMBO GIVEN BY G. MARSAGLIA p9 IN
C COMPUTER SCIENCE AND STATISTICS: THE INTERFACE, 1985
C

INTEGERS ISEED, 1X0, 1X1, 1X2, JYO, JY1, JY2, JY3
REAL*8 XMOD, YMOD, DIFF

C
C CHOICES OF STARTING VALUES AT RANDOM. IX ODD
C

DATA 1X1 / 1406829 /, 1X2 / 7843281 /,
& JY2 /15272794 /, JY3 /11523568 /

C DATA 1X1 / 14728051 /, 1X2 /13225497 /,
C & JY2 / 15652424 /, JY3 / 17735477 /
C DATA 1X1 / 5525003 /, 1X2 / 2481953 /,
C & JY2 /18476168 /, JY3 / 7136408 /
C

XMOD = 2.D0 ** 32
YMOD = 2.D0 •* 30 - 35.
JY1 = ISEED
IF (JY1 .LE. 0) JY1 = JY1 + YMOD
DCO = MOD(IX2 • 1X1, XMOD)
JYO = MOD(JY3 - JY1, YMOD)
DIFF = UCO - JYO
IF (DIFF .LE. 0.) DIFF = DIFF + XMOD
GENJC = DMOD(DIFF, XMOD) / XMOD

C
C MOVE STACKS DOWN
C

JY3 = JY2
JY2 = JY1
ISEED = JYO
1X2 = IX1
1X1 = 1X0
RETURN
END

»««««•«•»»*•»«*»•»««««♦***«*«**•»»•*»»*****««*»*****«********•»»*******•*******♦

FUNCTION GEN_L(ISEED)
INTEGER'4 ISEED
REAL*8 CNST, XSEED, YSEED
DATA CNST / 65539.0D0 /
XSEED =ISEED
IF (XSEED .LT. 0.D0) XSEED = XSEED + 2.D0 ♦♦ 32

55

YSEED = DMOD(XSEED*CNST,2.D0 •* 31)
ISEED = INT(YSEED)
GENL = YSEED / (2.DO"31)
RETURN
END

Random Number Test Program Listings

PROGRAM RANTEST3
C

C SORTS LIM PAIRS OF UNIFORM NUMBERS INTO A GRID KM X KM;
C THEN DOES CHI SQUARE TEST
C

INTEGERS JSEED(23), KSEED
DIMENSION KARY(100,100)

C
DATA JSEED /0, 1, 2, 3, 4, 123456789, 1111111, 6999,

& 65536, 16777216, 1078741824, 10, 100, 194305786,
& 1217344457, 314159276, 543219876, 9571916, 5868958,
& 1234567890, 1933985544, 2050954260, 918807827 /

C
UM = 20000

C UM = 300
KM = 64

C KM = 10
C

WRITE(3>29) UM, KM, KM
29 FORMATCPAIR UNIFORMITY CHI-SQUARE TEST FOR GENERATOR: GENJ7

& 18,' PAIRS, SORTED INTO',14,' BY',14,' GRID'/
& 'SEED VALUE CHISQUARE P VALUE')

C
DO 300 NS = 9, 10
KSEED = JSEED(NS)

C
DO 40 J = 1, KM

DO 30 I = 1, KM
KARY(I.J) = 0

30 CONTINUE
40 CONTINUE

C
DO 90 L = 1, LIM

XI = GENJ(KSEED)
X2 = GENJ(KSEED)

C WRITE(3, 49) XI, X2
49 FORMAT(2F10.6)

I = KM * XI + 1
J = KM • X2 + 1
KARY(I.J) = KARY(I.J) + 1

C
90 CONTINUE

C
SUM = 0.
DO 190 J = 1, KM

DO 160 I = 1, KM
SUM = SUM + KARY(I,J)**2

160 CONTINUE
C

190 CONTINUE
C

CHISQ = SUM*KM'KM/LIM - LIM
XI = SQRT(2.•CHISQ) - SQRT(2.*KM*KM - 3.)
PVAL = 1. - GAUSPRB(X1)

C
DO 285 J = 1, KM

56

WRITE(3,269) (KARY(I,J),I=1,KM)
269 FORMAT(64I3)
285 CONTINUE

C
WRITE(3,299) NS, JSEED(NS), CHISQ, PVAL

299 FORMAT(I4,I12,F10.2,F10.6)
C

300 CONTINUE
STOP 'CHI-SQUARE TEST COMPLETED'
END

«*«»•«*♦♦••••«««»»••»••»••»•••«•»•»»*•»««**»*••*•***•»•****•♦*•***♦*•***********

PROGRAM RANTEST4
C
C GAP TEST. FROM KNUTH, VOL 2, p 56
C

INTEGER'4 JSEED(23), KSEED
REAL*8 GEN_F
DIMENSION KARY(5,100), ALPH(5), KT(5), PVAL(5), ISUM(5), CHISQ(5)
LOGICAL DEBUG

C
DATA JSEED /0, 1, 2, 3, 4, 123456789, 1111111, 6999,

& 65536, 16777216, 1078741824, 10, 100, 194305786,
& 1217344457, 314159276, 543219876, 9571916, 5868958,
& 1234567890, 1933985544, 2050954260, 918807827 /

C
DATA NGAP / 7000 /, MT / 70 /, BETA / .1 /, UM /100000 /
DATAALPH/.0, .15, .45, .75, .90/
DEBUG = .FALSE.

C
WRITE(3,29) NGAP, MT, BETA (ALPH(I), 1=1,5)

29 FORMAT('GAP CHI-SQUARE TEST FOR GENERATOR: GENF7
& 18,' GAPS OF UP TO LENGTH',14,' OF WIDTH',F6.4/
& 'SEED VALUE CHISQUARE Ps',F5.2,4F10.2)

C
C DO FOR EACH SEED
C

DO 300 NS = 2, 23
KSEED = JSEED(NS)

C
C CLEAR COUNTING ARRAYS
C

DO 40 J = 1, MT
DO 30 I = 1, 5

KARY(I.J) = 0
30 CONTINUE
40 CONTINUE

DO 50 I = 1, 5
KT(I) = 1
ISUM(I) = 1

50 CONTINUE
NDRAW = 0

C
C PROCESS NGAP CASES WHERE GAP IS BETWEEN ALPH AND BETA

C
DO 140 L = 1, LIM

XI = GEN_F(KSEED)
NDRAW = NDRAW + 1

C IF (DEBUG) WRITE(3,59) XI
59 FORMAT(F10.6)

DO 100 I = 1, 5
IF (XI .LT. ALPH(I)) GO TO 120
IF (XI .GT. ALPH(I) + BETA) GO TO 100
K = KT(I)
IF (ISUM(I) .LE. NGAP) THEN

KARY(I,K) = KARY(I,K) + 1

57

KT(I) = 0
ISUM(I) = ISUM(I) + 1
GO TO 120

END IF
100 CONTINUE

C
C INCREASE EACH GAP LENGTH COUNTER
C

120 CONTINUE
C

NQUIT = 0
DO 130 I = 1, 5

KT(I) = MIN(KT(I) + 1, MT)
C
C ARE ALL GAP COUNTS COMPLETE?
C

IF (ISUM(I) .GT. NGAP) NQUIT = NQUIT + 1
130 CONTINUE

IF (NQUIT .GE. 5) GO TO 160
140 CONTINUE

C

C IF DROP THROUGH LOOP, THEN DRAWING LIM NUMBERS WAS NOT
C ENOUGH TO GET NGAP GAPS. THE GENERATOR MUST BE DOING
C BADLY. SKIP CHI-SQUARE
C

WRITE(3, 149) (ISUM(I)-l, 1=1, 5)
149 FORMAT('FAlLURE TO COMPLETE. # GAPS RECORDED:',5I5)

C
IF (DEBUG) THEN

DO 150 I = 1, 5
WRITE(3,169) (KARY(I,J), J=l,70)

150 CONTINUE
END IF

C
GO TO 300

C
C FORM CHI SQUARED STATISTIC
C

160 CONTINUE
C

IF (DEBUG) THEN
DO 170 I = 1, 5

WRITE(3,169) (KARYfl.J), J=l,70)
169 FORMAT(20I4)
170 CONTINUE

END IF
C

Q = 1. - BETA
DO 200 I = 1, 5

SUM = 0.
NSUM = 0
DO 190 J = 1, MT - 1

SUM = SUM + KARY(I,J)**2 / (BETA * Q"(J-1))
NSUM = NSUM + KARY(I,J)

190 CONTINUE
C

SUM = SUM + KARY(I,MT)"2 /(Q**(MT-1))
NSUM = NSUM + KARY(I,MT)

C
CHISQ(I) = SUM/NGAP - NGAP

C XI = SQRT(2.*CHISQ(I)) - SQRT(2.*MT - 3.)
C PVAL = 1. - GAUSPRB(X1)
C
C IF (CHISQ(I) .GE. 2.*MT) THEN

IF (DEBUG) THEN

58

WR1TE(3,199) I, SUM, NSUM, CHISQ(I)
199 FORMAT(I4,F10.4,I4,F10.1)

END IF
C END IF
C

NU = MT - 1
X2 = ((CHISQ(I)/NU)**.333 - (1. - 2./9./NU)) / SQRT(2./9./NU)

PVAL(I) = 1. - GAUSPRB(X2)
200 CONTINUE

C
WRITE(3,249) NS, JSEED(NS), CHISQ(l), (PVAL(I),I=1,5), NDRAW

249FORMAT(I4>I12,F10.2,5F10.6,I12)
IF (DEBUG) WRITE(3,259) NDRAW, NSUM

259 FORMATCPVAL, NDRAW, SUM2',2I10)
C

300 CONTINUE
STOP 'CHI-SQUARE TEST COMPLETED'
END

»».»»«»«»»»»•«*»»****•»*»•«♦*»»•••»»»»***••••»**»•»***♦*******•*****************

PROGRAM RANTEST5
C
C PERMUTATION TEST
C CATEGORIZES SETS OF SIX NUMBERS BY THEIR ORDER, THEN DOES CHI SQUARE TEST

C
REAL*8 GEN_D
INTEGERM JSEED(23), KSEED
DIMENSION KARY(720), IC(6), UN(6)
LOGICAL DEBUG

C
DATA JSEED /0, I, 2, 3, 4, 123456789, 1111111, 6999,

& 65536, 16777216, 1078741824, 10, 100, 194305786,
& 1217344457, 314159276, 543219876, 9571916, 5868958,
& 1234567890, 1933985544, 2050954260, 918807827 /

C
LIM = 5000
KM = 6
KFAC = 720

C
DEBUG = .FALSE.
IF (DEBUG) THEN

LIM = 100
KM = 4
KFAC = 24

END IF
C

WRITE(3,29) LIM, KM, KFAC
29 FORMAT('PERMUTATION CHI-SQUARE TEST FOR GENERATOR: GEN_D7

& 16,' SETS OF*,I2,' SORTED BY WHICH OF',I4,' PERMUTATIONS'/
& 'SEED VALUE CHISQUARE P VALUE')

C
DO 300 NS = 1, 23
KSEED = JSEED(NS)

C
DO 40 J = 1, KFAC

KARY(J) = 0
40 CONTINUE

CHISQ = 0.
PVAL = 0.

C
DO 190 L = 1, LIM

DO 80 J = 1, KM
UN(J) = GEND(KSEED)

80 CONTINUE
C IF (UN(KM) .EQ. UN(KM-l)) GO TO 250
C

59

IF (DEBUG) THEN
WRITE(3,89) (UN(I),I=1,KM)

89 FORMAT(6X,6F10.6)
END IF

C

C SORT TO DETERMINE PERMUTATION NUMBER
C

DO 130 JR = KM, 1, -1
UMAX=0.
DO 110 1 = 1, JR

IF (UN(I) .LT. UMAX) GO TO 110
UMAX = UN(I)
IMAX = I

110 CONTINUE
C

IC(JR) = IMAX - 1
SWAP = UN(JR)
UN(JR) = UN(IMAX)
UN(IMAX) = SWAP

130 CONTINUE
C

C USE KNUTH FORMULA TO IDENTIFY PERMUTATION NUMBER
C

ISUM = 0
DO 150 I = 1, KM-1

ISUM = ISUM + IC(I)
ISUM = ISUM * (1+1)

150 CONTINUE
ISUM = ISUM + IC(KM) + 1

C
IF (DEBUG) THEN

WRITE(3,159) ISUM
159 FORMAT(I6)

END IF
C

IF (ISUM .LE. 0 .OR. ISUM .GT. KFAQ THEN
WRITE(3,169) NS, L, ISUM

169 FORMAT('INDEX ERROR FOR SEED, SET, VALUE',314)
ELSE

KARY(ISUM) = KARY(ISUM) + 1
END IF

C
190 CONTINUE

C
SUM = 0.
ISUM2 = 0
DO 210 I = 1, KFAC

SUM = SUM + KARY(I)"2
ISUM2 = ISUM2 + KARY(I)

210 CONTINUE
C

CHISQ = SUM»KFAC/LIM - UM
C IF (CHISQ .LE. 0.) THEN
C IF (DEBUG) THEN

WRITE(3,239) (KARY(I), I=1,KFAQ
239 FORMAT(13I6)

C PVAL = 1.
C GO TO 250
C END IF
C

XI = SQRT(2.*CHISQ) - SQRT(2.*KFAC - 3.)
PVAL = 1. - GAUSPRB(Xl)

C
250 CONTINUE

WRITE(3,299) NS, JSEED(NS), CHISQ, PVAL

60

299 FORMAT(I4,I12,F10.2,F10.6)

C
300 CONTINUE

STOP 'CHI-SQUARE TEST COMPLETED'
END

«»««««««•*»«»*«••»**•**»***»*••*»**»•*»•»•*»»*«*•»***«»»»*♦*********************

PROGRAM RANTEST6
C
C RUN TEST. FROM KNUTH, VOL 2, p 68
C

INTEGERS JSEED(23), KSEED
REAL*8 GEN_D
DIMENSION KARY(IOO)
LOGICAL DEBUG

C
DATA JSEED /0, 1, 2, 3, 4, 123456789, 1111111, 6999,

& 65536, 16777216, 1078741824, 10, 100, 194305786,
& 1217344457, 314159276, 543219876, 9571916, 5868958,
& 1234567890, 1933985544, 2050954260, 918807827 /

C
DATA NRUN / 25000 /, MT / 6 /, PI / 3.14159276 /
DEBUG = .FALSE.

C
WRITE(3,29) NRUN, MT

29 FORMAT('RUN CHI-SQUARE TEST FOR GENERATOR: GEN_D7
& 18,' RUNS OF OF INCREASING VALUES UP TO LENGTH',14/
& 'SEED VALUE CHISQUARE P VALUE')

C
C DO FOR EACH SEED
C

DO 300 NS = 2, 23
KSEED = JSEED(NS)

C
C CLEAR KOUNTING ARRAY
C

DO 40 J = 1, MT
KARY(J) = 0

40 CONTINUE
NDRAW = 0
CHISQ = 0.
PVAL = 0.

C
C PROCESS NRUN CASES
C

DO 140 L = 1, NRUN
X0 = GEN_D(KSEED)

C IF (DEBUG) WRITE(3,69) X0
69 FORMAT(F10.6)

NDRAW = NDRAW + 1
DO 100 J = 1, MT - 1

XI = GEN_D(KSEED)
C IF (DEBUG) WRITE(3,69) XI

NDRAW = NDRAW + 1
IF (XI .LT. X0) GO TO 120
IF (XI .EQ. XO) THEN

WRITE(»,79) XI, KSEED, L, J
WRITE(3,79) XI, KSEED, L, J

79 FORMATC SUCCESSIVE X"s EQUAL TO',F15.12,
& ' SEED AND INDICES',112, 216)

GO TO 120
END IF
X0 = X1

100 CONTINUE
C
C IF FALL THROUGH LOOP, RUN IS AT LEAST MT

61

c
KARY(MT) = KARY(MT) + 1
GO TO 140

C
120 CONTINUE

C
KARY(J) = KARY(J) + 1

140 CONTINUE
C

IF (DEBUG) THEN
WRITE(3,159) (KARY(I), 1=1, MT)

159 FORMAT(10I5)
END IF

C
C FORM CHI SQUARED STATISTIC
C

SUM = 0.
NSUM = 0
FAC = 1.
DO 190 J = 1, MT - 1

FAC = FAC ♦ (J + 1.)
P = J/FAC
SUM = SUM + KARY(J)**2 / P
NSUM = NSUM + KARY(J)

190 CONTINUE
C

P = 1./FAC
SUM = SUM + KARY(MT)»*2 / P
NSUM = NSUM + KARY(MT)

C
CHISQ = SUM/NRUN - NRUN

C IF (CHISQ .LE. 0.) THEN
C PVAL1 = 1.
C IF (DEBUG) THEN
C WRITE(3,199) (KARY(I),I=1,MT)
C END IF
C GO TO 280
C END IF

XI = SQRT(2.*CHISQ) - SQRT(2.*MT - 3.)
PVAL1 = 1. - GAUSPRB(X1)

C

IF (CHISQ .GE. 2.*MT) THEN
IF (DEBUG) THEN

WRITE(3,199) (KARY(I),I=1,MT)
199 FORMAT(20I4)

END IF
END IF

C
NU = MT - 1

X2 = ((CHISQ/NU)".333 - (1. - 2./9./NU)) / SQRT(2./9./NU)
PVAL2 = 1. - GAUSPRB(X2)

C

C SMALL NU EXPANSION, FOR NU ODD. ABRAMOWITZ & STEGUN p 941
C

CHI = SQRT(CHISQ)
LIMR = (NU - 1) / 2
RESULT = 0.
DO 230 IR = LIMR, 1, -1

RESULT = RESULT + 1.
F = CHISQ / (2.*IR - 1.)
RESULT = RESULT * F

230 CONTINUE
RESULT = RESULT ♦ EXP(-CHISQ/2.) / SQRT(2.*PI)
PVAL = 2.*(1. - GAUSPRB(CHI) + RESULT / CHI)

C

62

C PRINT LINE OF OUTPUT TABLE FOR THIS SEED

C
280 CONTINUE

WRITE(3,299) NS, JSEED(NS), CHISQ, PVAL, NDRAW
299FORMAT(I4,I12,F10.2,F10.6,U2)

IF (DEBUG) WRITE(3,309) PVAL1, PVAL2, NDRAW, NSUM, RESULT, F
309 FORMAT('PVALs, NDRAW, SUM2*,2F10.6,2I10,F10.6,F10.2)

C
300 CONTINUE

STOP 'RUN TEST COMPLETED'
END

»«««««»««**«*»••*♦««•«*»»•*•••»*•»»•«»*»»»•«»***••***•*•**•♦******•*************

PROGRAM RANTEST7
C
C MARSAGLIA OVERLAPPING TRIPLES TEST
C USES 30,000 NUMBERS AND LOOKS AT TRIPLES. UNIFORMITY AND INDEPENDENCE

C
INTEGERM JSEED(23), KSEED
DIMENSION KARY(12,12,12), LARY(12,12)

C
DATA JSEED / 0, 1, 2, 3, 4, 123456789, 1111111, 6999,
& 65536, 16777216, 1078741824, 10, 100, 194305786,
& 1217344457, 314159276, 543219876, 9571916, 5868958,
& 1234567890, 1933985544, 2050954260, 918807827 /

C
LIM = 30000
KM = 8

C
WRITE(3,29) UM, KM, KM, KM

29 FORMAT('OVERLAPPING TRIPLES TEST FOR GENERATOR: GEN_K7
& 18,' SETS, SORTED INTO',13,' BY',13,' BY',I3,' GRID'/
& 'SEED VALUE CHISQUARE P VALUE')

C
DO 300 NS = 1, 23
KSEED = JSEED(NS)
CHISQ = 0.
PVAL = 0.

C
DO 40 K = 1, KM

DO 30 J = 1, KM
LARY(J.K) = 0
DO 20 I = 1, KM

KARY(I,J,K) = 0
20 CONTINUE
30 CONTINUE
40 CONTINUE

C
XI = GEN K(KSEED)
X2 = GENJC(KSEED)

C WRITE(3,49)X1*KM
C WRITE(3,49) X2^KM
C 49 FORMAT(F10.6)

IF (XI .EQ. X2) GO TO 280
C

10 = KM ♦ XI + 1
JO = KM • X2 + 1

C
C SORT SUCCESSIVE TRIPLES FROM XI, X2, X3
C

DO 90 L = 3, LIM
X = GEN_K(KSEED)

C WRITE(3,49) X'KM
K0 = KM ♦ X + 1
KARY(I0,J0,K0) = KARY(I0,J0,K0) + 1
LARY(J0,K0) = LARY(J0,K0) + 1

63

10= JO
JO = KO

90 CONTINUE
C
C ADD TRIPLE Xn-1, Xn, XI
C

K0 = KM * XI + 1
KARY(I0,J0,K0) = KARY(I0,J0,K0) + 1
LARY(J0,K0) = LARY(J0,K0) + 1
10= JO
J0 = K0

C
C FINALLY Xn, XI, X2 TO COMPLETE CYCLE
C

KO = KM * X2 + 1
KARY(I0,J0,K0) = KARY(I0,J0,K0) + 1
LARY(JO.KO) = LARY(JO.KO) + 1

C

C FORM CHI-SQUARE PIECES
C

SUMK = 0.
SUML = 0.
DO 190 K = 1, KM

DO 160 J = 1, KM
SUML = SUML + LARY(J,K)"2
DO 130 I = 1, KM

SUMK = SUMK + KARY(I,J,K)»*2
130 CONTINUE
160 CONTINUE
190 CONTINUE

C

C WRITE(3, 209) ((LARY(J,K),J=1)KM),K=1>KM)
C 209 FORMAT(16I4)
C DO 220 K = 1, KM
C WRITE(3,209) ((KARY(I,J,K),I=1,KM),J=1,KM)
C 220 CONTINUE
C

CHISO = (SUMK*KM"3 - SUML'KM'KM) / UM
NU = KM"3 - KM'KM
XI = SQRT(2.*CHISQ) - SQRT(2.'NU - 1.)
PVAL = 1. - GAUSPRB(X1)

C
280 CONTINUE

WRITE(3,299) NS, JSEED(NS), CHISQ, PVAL
299 FORMAT(I4,I12,F10.2,F10.6)

C
300 CONTINUE

STOP 'OVERLAPPING TRIPLES TEST COMPLETED'
END

••♦*««♦♦»»••♦«»**»«♦****««»»»«»♦»»*«♦««,*♦»,»«*♦»*»,,,,»,,,,,,,»„,,,,,,,,,,„,„,,„

FUNCTION GAUSPRB(X)
C

C COMPUTES THE PROBABILITY THAT A RANDOM VARIABLE Y THAT HAS
C THE GAUSSIAN DISTRIBUTION WITH MEAN 0 AND VARIANCE 1 IS
C LESS THAN THE INPUT VALUE X. ABRAMOWITZ & STEGUN p 932
C

REAL'8 DCOEFF(6), SUM, XX
DATA DCOEFF / .0498673470, .0211410061, .0032776263,
& .0000380036, .0000488906, .0000053830 /

C
XX = X
IF (X .LT. 0.) XX = -X
SUM = 1.
DO 50 I = 1, 6

SUM = SUM + DCOEFF(I) * XX*»I

64

50 CONTINUE
C

XX = 1. - i • SUM"(-16)
GAUSPRB = XX
IF (X .LT. 0.) GAUSPRB = 1. - XX

C
RETURN
END

65

APPENDIX C - RESULTS OF RANDOM NUMBER GENERATOR TESTS

Results Summary

It was noted early in testing that UNIF and UNIF2 are essentially identical, so only the
latter was used for most testing. Some generators gave consistently good results (denoted by .
in the table), some good results except for specific seeds (seed numbers), some gave slightly bad
results for several seeds (?), and some gave consistently bad results (X).

The best generators are GEN_K and GEN_H, followed by GEN_B, GEN_A, and UNIF2.
The worst seed is seed 10, which is 22\ closely followed by 9, which is 216. Large powers of
2 make bad seeds. However, seed 19 is sometimes a bad choice, and that is used because it is
a friend's phone number.

Generator Rantest3 Rantest4 Rantest5 Rantestö Rantest7

UNIF2 . . ? . 10

GEN_A • . . ? ,

GEN_B • . . . 10

GEN_C • ? . X .

GEN_D X X X X X

GEN_E • X X X X

GEN_F X X X X X

GEN_G X 9,10,19 9,10,11,19 9,10,19 9,10,14

GEN_H

GENJ 9,10 9,10 9,10 10 9,10,19

GENJ X 9,10 10 10,16 9,10

GEN_K

GEN_L X 9,10,22 9,10 X X

Summary Plots

The results of the Rantests are P values from chi-square tests. If a generator is good, then
these P values should be uniformly distributed between 0 and 1. Therefore a composite summary
of the test results may be made by plotting the sorted P values and comparing to a 45 degree
line. The next two pages have such plots for 12 of the generators subjectively ranked in order
of decreasing quality. Generators GEN_E and GEN_F are so bad that their plots are not shown;
the latter is essentially all zeros.

66

1. GEN K 4. GEN A

2. GEN H 5. UNIF2

3. GEN B 6. GSS GENERATOR

67

7. GEN I 10. GEN G

8. GEN J 11. GEN C

9. GEN L 12. GEN D

68

A Few Detailed
Samples

The chi-square
values do not indicate
what is going on that
makes the generators
good or bad. Just a
few examples will
illustrate.

The figure
shows the number of
gaps of each length
from Rantest4 for the
good generator GEN_K
and for GEN E

GAP TEST FOR GEN.E AND GENJC

n as

-Theory

Gap Length

-GEN_E -^-GEN_K

(terrible). The theoretical distribution is also shown; it is barely discernable from the results for
GENJC. For GEN_E gaps of lengths 1 and 2 are badly underrepresented, with gaps of 4 and
up making up the difference.

Patterns are discernable in the 64 x 64 array computed in Rantest3 for bad generators.
Portions of the array are given for two of the generators. A good generator has the entries
distributed randomly around 4.88.

Rantest3 Array for GEN_D (portion)
17
13
16
19
15
9

12
12
16
17
9
9

0 20
0 15
0 17
0 0

0 17
0 13
0 14

0
0
0
9

11
14
10
12
12
9

14
10
8

17
0 18

0
0
0
0
0

13
17
12
19
11
12
19
13
13
19

79142
39108
0 95
0 31
0 0

126128
128137
116127
127118
93137
28118
0102
0 28

30 0 0
102 0 0
124 28 0
137 90 0
164121 32
121140 95
126128120
128137136
86127124
31118137
0100164
0 32121

0 89

14
12
21
9

12
14
13
17
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

13
15
18
12
13
8

20

16
17
22
8

17
13
7

17
6
7

0 20
0 0

0 15
0 11
0 14
0 16 0 14

0 12

0
0
0
0

12
10
19
16
7

12
10
12
12
19
9

0
0
0
0
0
0

14
13
13
13
15
17
13
14
14

0
0
0
0
0
0
0
0
0

15
14
12
12
10
19

Rantest3 Array for GENF (portion)

0 29
0 0

0 31
0103
0126
0128
0120
0136

34124
96137
119129
118 30
121 0
140
128
137
99
31
0
0
0
0
0

0 0
0 0

33 0
106 0
136 31
134 91
119110
118142
121126
140128
99120
20129
0 23
0
0
0
0
0
0
0
0

0
0
0
0
0
0

40
80

128 30
137 96
136124 37
134119 86
112110142
20131108
0 261221

0 251
0 0
0 0
0 0
0 0
0 0

0
0
0
0
0
0
0
0
0
0
0
0

37
99

0 35
0 84
0 25
0 0

16 28
14 87
17130
0 22
0 0
0 0
0 0

0
0
0
0
0
0
0
0
0
0

19
1
0
0
0
0
0
0
0
0
0

18
13
18
13
19
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0

20
15
15
15
14
16
14
8

12
16

69

Selected Output Files

Given are the output files from tests Rantest3, 5, 4, 6, and 7 on GEN_K, which is a good
combination generator based on a suggestion of Marsaglia [1985]. These are followed by files
for GEN_L, a moderately bad generator, and finally those for the generator in the GSS system.
These are presented here because the P values from these output arrays form the raw data for the
plots given on page 22. Another analyst might want to view the data in other ways.

PAIR UNIFORMITY CHI-SQUARE
20000 PAIRS, SORTED INTO

SEED
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

VALUE CHISQUARE
1 4129.54
2
3
4

123456789
1111111

6999
65536

16777216
1078741824

10
100

194305786
1217344457
314159276
543219876

9571916
5868958

1234567890
1933985544
2050954260
918807827

4088.58
4016.49
4088.17
4120.52
3944.40
4119.30
4159.03
4012.39
4103.32
4128.72
4213.09
4040.24
4195.07
4041.88
4055.81
4189.75
4158.62
3980.85
4064.82
4187.29
3999.28

TEST FOR GEN_K
64 BY 64 GRID
P VALUE
.349621
.526107
.806821
.527910
.387005
.952956
.392197
.238767
.819103
.461192
.352965
.096598
.726269
.134659
.720169
.665887
.147669
.240161
.897014
.628766
.153951
.855061

PERMUTATION CHI-SQUARE TEST
5000 SETS OF 6 SORTED BY 72

GAP CHI-SQUARE TEST FOR GENERATOR: GEN
7000 GAPS OF UP TO LENGTH 70 OF WIDTH"
SEED

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

VALUE CHISQUARE
1
2
3
4

123456789
1111111

6999
65536

16777216
1078741824

10
100

194305786
1217344457
314159276
543219876
9571916
5868958

1234567890
1933985544
2050954260
918807827

79.10
87.74
57.26
72.62
77.53
77.43
73.94
75.20
68.69
69.05
72.40
56.25
50.73
87.19
91.43
72.46
58.10
68.06
85.97
62.22
77.83
84.78

Ps .00
.190226
.063665
.842390
.359802
.225390
.227855
.320128
.284696
.488021
.475670
.366329
.864898
.951373
.068808
.036866
.364577
.822211
.509298
.081425
.705412
.218429
.095439

K
".1000

.15
.296844
.411352
.989288
.867519
.623744
.353782
.432911
.774559
.901417
.370501
.008136
.722301
.903558
.619446
.906244
.838759
.700262
.970128
.837129
.482313
.122242
.638449

SEED
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

VALUE CHISQUARE
0
1
2
3
4

123456789
1111111

6999
65536

16777216
1078741824

10
100

194305786
1217344457
314159276
543219876
9571916
5868958

1234567890
1933985544
2050954260
918807827

.45
.010474
.786929
.116408
.522792
.004310
.076969
.966023
.751929
.801399
.967465
.823075
.152411
.639021
.694625
.241722
.331026
.138668
.456839
.334106
.566077
.648191
.443233

.75
.470724
.516364
.408702
.081640
.690087
.241328
.238756
.287742
.365851
.101099
.533858
.400661
.399486
.475959
.640814
.346410
.842708
.128525
.312082
.425684
.421655
.043327

657.18
698.94
770.66
620.90
657.47
746.46
684.54
719.97
737.82
776.42
724.00
727.17
668.13
720.83
751.65
815.30
660.64
711.90
799.74
664.96
712.77
738.40
700.10

.90
.515326
.360382
.309663
.534074
.758689
.077465
.129351
.628358
.107383
.424802
.957262
.117182
.620159
.955834
.510335
.803441
.430046
.808674
.524949
.454886
.047821
.178650

FOR GEN_K
0 PERMUTATIONS

P VALUE
.950892
.698274
.088225
.996193
.950080
.232499
.817689
.484562
.306295
.067040
.442430
.409833
.911964
.475494
.193635
.006703
.940427
.569225
.018498
.925026
.560214
.301053
.687453

70

RUN CHI-SQUARE TEST FOR GENERATOR: GEN K OVERLAPPING TRIPLES TEST FOR GEN K
40000 RUNS OF INCREASING VALUES TO LENGTH 30000 SETS, SORTED INTO 8 BY 8 BY 8 GRID
8 SEED VALUE CHISQUARE P VALUE
SEED VALUE CHISQUARE P VALUE 1 0 369.25 .996938

1 0 7.94 .338271 2 1 438.07 .624317
2 1 2.07 .955841 3 2 414.93 .866348
3 2 5.13 .644541 4 3 460.28 .335723
4 3 3.04 .880977 5 4 475.61 .177443
5 4 5.43 .607205 6 123456789 435.83 .652697
6 123456789 4.39 .733872 7 1111111 421.93 .807140
7 1111111 6.02 .537882 8 6999 451.29 .449650
8 6999 4.31 .743412 9 65536 471.43 .214934
9 65536 3.95 .785289 10 16777216 468.65 .242287

10 16777216 1.98 .961069 11 1078741824 489.13 .086795
11 1078741824 2.54 .924239 12 10 465.02 .280911
12 10 2.50 .927157 13 100 493.50 .066808
13 100 5.53 .596001 14 194305786 478.44 .154574
14 194305786 16.26 .022825 15 1217344457 395.88 .962317
15 1217344457 5.64 .582164 16 314159276 451.81 .442914
16 314159276 5.79 .564615 17 543219876 443.33 .555527
17 543219876 7.03 .426053 18 9571916 460.44 .333828
18 9571916 4.75 .690977 19 5868958 417.44 .846689
19 5868958 4.00 .779778 20 1234567890 399.90 .949070
20 1234567890 6.93 .436078 21 1933985544 441.02 .586052
21 1933985544 6.09 .529327 22 2050954260 452.65 .431791
22 2050954260 3.38 .847850 23 918807827 430.07 .721902
23 918807827 6.28 .506916

The following are output files for the generator GEN_L, which uses the multiplier and

modulus of RANDU. This is known to be a rather poor generator.

PERMUTATION CHI-SOUARE TEST FOR GEN L
PAIR UNIFORMITY CHI-SQUARE TEST FOR GEN L 5000 SETS OF 6 SORTED BY 720 PERMUTATIONS

20000 PAIRS, SORTED INTO 64 BY 64 SEED VALUE CHISQUARE P VALUE
GK1D 1 0 .00 .000000
SEED VALUE CHISQUARE P VALUE 2 1 719.10 .493645

2 1 4149.61 .271951 3 2 779.30 .058065
3 2 4086.53 .535116 4 3 737.54 .308931
4 3 4211.46 .099688 5 4 731.78 .363689
5 4 4136.50 .321707 6 123456789 723.42 .448413
6 123456789 3999.69 .854015 7 1111111 710.75 .581192
7 1111111 3987.40 .883233 8 6999 682.53 .831754
8 6999 4056.63 .662570 9 65536 10827.90 .000000
9 65536 406954.30 .000000 10 16777216 276250.40 .000000

10 167772165100000.00 .000000 11 1078741824 625.79 .994298
11 1078741824 4033.28 .751451 12 10 680.51 .845119
12 10 4288.46 .017063 13 100 757.41 .155565
13 100 4126.67 .361374 14 194305786 757.98 .152057
14 194305786 4093.08 .506253 15 1217344457 754.24 .175831
15 1217344457 4075.06 .585150 16 314159276 783.33 .047142
16 314159276 3946.04 .951116 17 543219876 668.70 .909420
17 543219876 4034.92 .745637 18 9571916 701.82 .670934
18 9571916 3951.36 .944739 19 5868958 663.81 .929398
19 5868958 3948.90 .947759 20 1234567890 707.01 .619580
20 1234567890 4139.37 .310495 21 1933985544 762.59 .125935
21 1933985544 4148.38 .276446 22 2050954260 705.86 .631197
22 2050954260 4156.98 .245784 23 918807827 708.74 .601971
23 918807827 4189.75 .147669

71

The gap test has an escape provision. If the generator is doing so poorly that the
number of draws becomes excessive without reaching the desired 7000 gaps, it quits and
prints a message (seed 10 below). If this is the case, then the results should be interpreted as
the equivalent of a 0 p value for the Chi squared statistic.

GAP CHI-SQUARE TEST FOR GENERATOR: GEN
7000 GAPS OF UP TO LENGTH 70 OF WIDTH"
SEED

2
3
4
5
6
7
8
9

VALUE CHISQUARE
61.41
73.69
76.47
54.58
77.91
60.33
77.25

5645.16

1
2
3
4

123456789
1111111

6999
65536

Ps .00
.730228
.327474
.251395
.897385
.216622
.762268
.232011
.000000

FAILURE TO COMPLETE. # GAPS RECORDED:
11
12
13
14
15
16
17
18
19
20
21
22
23

1078741824
10

100
194305786

1217344457
314159276
543219876

9571916
5868958

1234567890
1933985544
2050954260
918807827

93.36
63.62
51.62
50.98
59.07
66.86
78.25
54.59
75.93
64.30
41.64
51.10
83.32

.027233

.660424

.941418

.948734

.797237

.550492

.208762

.897131

.265259

.637762

.996213

.947363

.115354

L
.1000

.15
.001747
.823231
.765806
.118879
.623609
.767973
.903373
.000000
7000 6250
.567058
.189541
.597304
.411741
.381786
.966239
.757463
.867280
.435953
.871017
.605665
.000040
.356594

RUN CHI-SQUARE TEST FOR GENERATOR: GEN_L
40000 RUNS OF INCREASING VALUES TO LENGTH
8
SEED VALUE CHISQUARE P VALUE

1 0 .00 .000000
2 1 20.77 .004129
3 2 10.98 .139669
4 3 4.11 .766791
5 4 8.56 .285555
6 123456789 17.91 .012381
7 1111111 7.52 .376506
8 6999 21.15 .003561
9 65536 17609.20 .000000

10 16777216 335832.00 .000000
11 1078741824 9.92 .193152
12 10 17.87 .012591
13 100 3.32 .853419
14 194305786 25.15 .000715
15 1217344457 6.61 .470451
16 314159276 10.35 .169820
17 543219876 7.11 .417804
18 9571916 4.28 .746452
19 5868958 10.59 .157744
20 1234567890 5.89 .552132
21 1933985544 3.94 .786753
22 2050954260 5.75 .568797
23 918807827 4.65 .703024

.45
.121468
.910745
.146500
.055237
.552809
.749646
.756201
.000000
7000 7000
.867746
.255889
.546289
.320211
.263738
.296031
.968911
.304678
.441941
.645476
.686627
.086565
.858891

.75
.912255
.311673
.105356
.852356
.013676
.066800
.801640
.000000
6250
.662920
.927902
.834878
.588686
.695407
.016780
.240061
.880626
.327289
.138313
.139398
.070286
.092635

.90
.324759
.014619
.857395
.893809
.285429
.525341
.466001
.000000

.024357

.377883

.626399

.850909

.516442

.410536

.208865

.198900

.556500

.186125

.777165

.943420

.006954

OVERLAPPING TRIPLES TEST FOR
30000 SETS, SORTED INTO 8 BY
SEED

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

VALUE CHISQUARE
1 2027.60

123456789
1111111

6999
65536 133342.20

16777216 389944.10
1078741824 1149.43

1076.94
1962.59
523.79
569.36
1126.67
1938.12

10
100

194305786
1217344457
314159276
543219876

9571916
5868958

1234567890
1933985544
2050954260
918807827

599.48
1178.56
1127.78

14886.00
1962.35
2013.99
599.09
555.20

1145.26
1024.75

14852.44
1065.40

GEN_L
8 BY 8 GRID
P VALUE
.000000
.000000
.000000
.007148
.000065
.000000
.000000
.000000
.000000
.000000
.000001
.000000
.000000
.000000
.000000
.000000
.000001
.000330
.000000
.000000
.000000
.000000

72

The following files are test results from the generator used in the GSS system at

CECOM, and therefore in the SPM.

PAIR UNIFORMITY CHI-SQUARE TEST FOR GSS PERMUTATION CHI-SQUARE TEST FOR GENERATOR
20000 PAIRS, SORTED INTC 64 BY 64 IN GSS

GRID 5000 SETS OF 6 SORTED BY WHICH OF 720
SEED VALUE CHISQUARE P VALUE PERMUTATIONS

1 0 4052.12 0.680654 SEED VALUE CHISQUARE P VALUE
2 1 4134.45 0.329821 1 0 765.18 0.112730
3 2 4146.33 0.284018 2 1 775.55 0.069936
4 3 4118.89 0.393931 3 2 775.55 0.069936
5 4 4113.15 0.418440 4 3 775.55 0.069936
6 123456789 4116.43 0.404385 5 4 777.86 0.062425
7 1111111 3999.28 0.855061 6 123456789 723.71 0.445420
8 6999 4018.12 0.801770 7 1111111 724.58 0.436460
9 65536 4115.61 0.407892 8 6999 730.05 0.380787

10 16777216 4015.26 0.810557 9 65536 702.40 0.665356
11 1078741824 4047.21 0.699907 10 16777216 736.96 0.314234
12 10 4112.33 0.421977 11 1078741824 713.06 0.557203
13 100 3993.96 0.868204 12 10 778.14 0.061533
14 194305786 4003.79 0.843279 13 100 763.46 0.121416
15 1217344457 4047.21 0.699907 14 194305786 784.77 0.043671
16 314159276 3979.62 0.899461 15 1217344457 714.21 0.545140
17 543219876 3996.42 0.862243 16 314159276 755.10 0.170141
18 9571916 4086.94 0.533317 17 543219876 794.85 0.024811
19 5868958 3997.64 0.859196 18 9571916 714.21 0.545140
20 1234567890 4047.21 0.699907 19 5868958 756.54 0.160929
21 1933985544 4160.26 0.234611 20 1234567890 695.20 0.732275
22 2050954260 4121.34 0.383558 21 1933985544 711.62 0.572220
23 918807827 4128.72 0.352965 22 2050954260

23 918807827
707.01
756.83

0.619583
0.159127

GAP CHI-SQUARE TEST FOR GENERATOR IN GSS
6500 GAPS OF UP TO LENGTH 70 OF WIDTH 0.1000
SEED VALUE CHISQUARE Ps 0.00 0.15 0.45 0.75 0.90

1 0 60.06 0.770141 0.750811 0.270583 0.233189 0.628845
2 1 59.66 0.781346 0.650550 0.019477 0.817679 0.676581
3 2 59.10 0.796417 0.668031 0.020155 0.814592 0.681633
4 3 59.04 0.798081 0.693841 0.026416 0.818795 0.696698
5 4 60.27 0.763950 0.697565 0.028528 0.836244 0.702075
6 123456789 68.20 0.504766 0.319372 0.612469 0.482819 0.358713
7 1111111 57.14 0.845179 0.293034 0.555058 0.176051 0.897143
8 6999 55.06 0.888627 0.265917 0.437478 0.108680 0.346341
9 65536 82.50 0.127817 0.752702 0.834128 0.448534 0.171280

10 16777216 78.86 0.195292 0.835838 0.740581 0.506603 0.077628
11 1078741824 70.28 0.434553 0.170393 0.378881 0.237267 0.535928
12 10 63.30 0.670740 0.647165 0.042954 0.876302 0.727100
13 100 66.78 0.553262 0.580088 0.265777 0.885728 0.491686
14 194305786 69.32 0.466697 0.786260 0.757810 0.034240 0.008054
15 1217344457 68.30 0.501262 0.099260 0.006290 0.744610 0.710015
16 314159276 66.24 0.571856 0.060258 0.100924 0.874196 0.541280
17 543219876 77.37 0.229110 0.674521 0.165676 0.432569 0.556232
18 9571916 63.84 0.653023 0.034591 0.207023 0.126443 0.600962
19 5868958 80.80 0.156785 0.619371 0.000764 0.912909 0.359614
20 1234567890 91.74 0.035146 0.042005 0.043784 0.874018 0.699561
21 1933985544 80.93 0.154323 0.740990 0.415336 0.851022 0.073228
22 2050954260 80.04 0.171185 0.959658 0.839948 0.529940 0.023087
23 918807827 71.46 0.395971 0.713819

73

0.755923 0.561918 0.763137

RUN CHI-SQUARE TEST FOR GENERATOR IN GSS
25000 RUNS OF INCREASING VALUES TO LENGTH
6
SEED VALUE CHISQUARE P VALUE

1 0 2.62 0.758752
2 1 3.01 0.699083
3 2 3.12 0.680722
4 3 3.14 0.678316
5 4 3.03 0.696071
6 123456789 1.45 0.918415
7 1111111 4.76 0.445398
8 6999 8.49 0.131299
9 65536 9.39 0.094325

10 16777216 14.19 0.014461
11 1078741824 2.03 0.844532
12 10 3.10 0.684632
13 100 2.82 0.727664
14 194305786 4.28 0.509403
15 1217344457 2.64 0.755481
16 314159276 2.03 0.845620
17 543219876 1.57 0.905049
18 9571916 8.92 0.112141
19 5868958 2.11 0.833536
20 1234567890 2.15 0.827968
21 1933985544 9.89 0.078337
22 2050954260 5.50 0.357518
23 918807827 4.67 0.457222

30000 SETS, SORTED INTO 8 BY 8 BY 8 GRID
SEED VALUE CHISQUARE P VALUE

1 0 468.85 0.240331
2 1 473.13 0.199070
3 2 471.31 0.216072
4 3 469.83 0.230480
5 4 470.36 0.225226
6 123456789 487.82 0.093633
7 1111111 477.75 0.159984
8 6999 465.36 0.277197
9 65536 459.91 0.340144

10 16777216 476.95 0.166347
11 1078741824 465.72 0.273229
12 10 476.45 0.170379
13 100 477.82 0.159381
14 194305786 501.83 0.038867
15 1217344457 464.19 0.290232
16 314159276 460.35 0.334903
17 543219876 467.99 0.249178
18 9571916 456.84 0.378049
19 5868958 478.17 0.156650
20 1234567890 500.81 0.041656
21 1933985544 499.03 0.046930
22 2050954260 450.51 0.460012
23 918807827 471.16 0.217500

74

APPENDIX D - RANDOM NUMBER SYNCHRONIZATION IN OSPREY

Osprey is a space defense mission effectiveness model developed by Teledyne Brown
Engineering and used in support of many antisatellite system studies by the Army Kinetic Energy
ASAT System Program Office, Air Force Operational Test and Evaluation Center, Space
Command, and various contractors. The random number synchronization scheme was developed
by Jeff Niemuth of Teledyne Brown in 1978. The material here is from the Analyst Manual
written for the version that supported the ASAT Initial Operational Test and Evaluation [Webb
1987].

RANDOM NUMBER SEED ORGANIZATION The entities for
which random draws
are needed are
interceptor missiles,
aircraft used to deliver
the missiles to their
designated launch point
and launch them, carrier
aircraft equipment, 11
types of ground support
equipment, base control
center, satellite targets,
ground based satellite
tracking radars, and a
single overall mission
control center. All but
the last three are
associated with the
particular base at which
they are located. The
generators are organized
into a two-dimensional

array as shown.

The actual random number seeds are stored in a singly dimensioned array JRANGS.
When a random number is needed for entity K associated with row I and column J of the
organization scheme, an index is constructed by the formula

INDEX = IBLOCK(I, J) - IBEGIN(I, J) + K.

The value of INDEX is used to select the element in JRANGS to use as the seed for the
particular draw. Here IBLOCK is an array of starting points in JRANGS and IBEGIN is an array
of first entity numbers for block I J. Most entries in IBEGIN are 1, except for some entities that
are numbered consecutively across bases. Thus IBLOCK(I, J) is the seed for the first entity in
position I J. The values used in IBLOCK and the corresponding number of seeds associated with
each block (equivalent to the maximum number of entities of a class) are as follows:

75

Row
I

Column J

1 2 3 4 5 6 7

1 1 21 41 61 0 1461 1881
2 81 101 121 141 0 1531 1961
3 161 181 201 221 1251 1601 1921
4 241 261 281 301 1321 1621 0
5 321 341 361 381 1391 1741 0
6 401 421 441 461 0 1811 0
7 481 501 521 541 0 0 0
8 561 581 601 621 0 0 649
9 1011 1031 1051 1071 0 0 0

10 1091 1111 1131 1151 0 0 0
11 1171 1191 1211 1231 0 0 0
12 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0
16 645 646 647 648 0 0 0
17 651 676 701 726 0 0 0
18 751 816 881 946 0 0 0
19 641 642 643 644 0 0 0
20 0 0 0 j 0 0 0 0

Row I Column J

1 2 3 4 5 6 7

1 20 20 20 20 _ 70 40
2 20 20 20 20 - 70 40
3 20 20 20 20 70 70 40
4 20 20 20 20 70 70 _
5 20 20 20 20 70 70 _
6 20 20 20 20 - 70 _
7 20 20 20 20 _ _ _

8 20 20 20 20 . . 2
9 20 20 20 20 . _ _

10 20 20 20 20 „ _ .

11 20 20 20 20 _ a.

16 1 1 1 1 - _ .

17 25 25 25 25 _ „ —

18 65 65 65 65 . _

19 1

1 1 1 -
'

76

The advantage of this scheme is that it will accommodate irregular indexing structures for
different entities and different quantities of different entities efficiently. As the model changes,
it is possible to restructure the scheme by changing the values in IBLOCK and adjusting the
indices used in each random number call accordingly.

77

APPENDIX E - EXPERIMENT DESIGNS FOR SIMULATION STUDIES

Designs for 3 through 10 factors at 3
levels are given. The levels are denoted as
0 = low, 1 = nominal, and 2 = high.
Efficiencies are given that compare the
average variance to that obtainable with the
full factorial, on a per run basis.

Three factors. 96%
1) 1 1 1
2) 1 1 0
3) 1 0 1
4) 0 1 1
5) 1 1 2
6) 1 2 1
7) 2 1 1
8) 0 0 0
9) 0 2 2

10) 2 0 2
11) 2 2 0
12) 0 0 2
13) 2 2 2
14) 0 2 0
15) 2 0 0

Four factors. 82%

1) 1 1 1 1
2) 1 1 1 0
3) 1 1 0 1
4) 1 0 1 1
5) 0 1 1 1
6) 1 1 1 2
7) 1 1 2 1
8) 1 2 1 1
9) 2 1 1 1

10) 1 0 0 0
11) 1 0 2 2
12) 1 2 0 2
13) 1 2 2 0
14) 0 0 0 2
15) 0 0 2 0
16) 0 2 0 0
17) 2 2 2 2
18) 2 2 0 0
19) 2 0 0 2
20) 0 2 2 2
21) 2 0 2 0

Five factors. 81%

1) 1 1 1 1 1
2) 1 1 1 1 0

3) 1 1 1 0 1
4) 1 1 0 1 1
5) 1 0 1 1 1
6) 0 1 1 1 1
7) 1 1 1 1 2
8) 1 1 1 2 1
9) 1 1 2 1 1

10) 1 2 1 1 1
11) 2 1 1 1 1
12) 0 0 2 2 2
13) 0 2 0 2 2
14) 0 2 2 0 2
15) 0 2 2 2 0
16) 2 0 0 2 2
17) 2 0 2 0 2
18) 2 0 2 2 0
19) 2 2 0 0 2
20) 2 2 0 2 0
21) 2 2 2 0 0
22) 2 2 2 2 2
23) 0 0 2 0 0
24) 0 2 0 0 0
25) 2 0 0 0 0
26) 0 0 0 0 2
27) 0 0 0 2 0

Six factors .70%

1) 1 1 1 1 1 1
2) 1 1 1 1 1 0
3) 1 1 1 1 0 1
4) 1 1 1 0 1 1
5) 1 1 0 1 1 1
6) 1 0 1 1 1 1
7) 0 1 1 1 1 1
8) 1 1 1 1 1 2
9) 1 1 1 1 2 1

10) 1 1 1 2 1 1
11) 1 1 2 1 1 1
12) 1 2 1 1 1 1
13) 2 1 1 1 1 1
14) 0 0 0 0 0 2
15) 0 0 0 0 2 0
16) 0 0 0 2 0 0
17) 0 0 2 0 0 0
18) 0 2 0 0 0 0
19) 2 0 0 0 0 0
20) 0 0 2 2 2 2
21) 0 2 0 2 2 2
22) 0 2 2 0 2 2
23) 0 2 2 2 0 2
24) 0 2 2 2 2 0

78

25)
26)
27)
28)
29)
30)
31)
32)
33)
34)
35)

0 0
0 2
0
2
2
2
2

2
2
0
2
2
0

2 2
0 0
0 2
2 0 0
2 2 2

2
2
2
0
2
2
0
2
0

Seven factors. 59%
1) 1 1 1 1 1 1 1
2) 1 1 1 1 1 1 0
3) 1 1 1 1 1 0
4) 1 1 1 1 0 1
5) 1 1 1 0 1 1
6) 1 1 0 1 1 1
7) 1 0 1 1 1 1
8) 0 1 1 1 1 1
9) 1 1 1 1 1 1 :

10) 1 1 1 1 1 2
11) 1 1 1 1 2 1
12) 1 1 1 2 1 1
13) 1 1 2 1 1 1
14) 1 2 1 1 1 1
15) 2 1 1 1 1 1
16) 0 0 0 0 0 0 0
17) 2 2 0 0 0 0 0
18) 2 0 2 0 0 0 0
19) 2 0 0 2 0 0 0
20) 2 0 0 0 2 0 0
21)2000020
22) 2 0 0 0 0 0 2
23) 0 2 2 0 0 0 0
24) 0 2 0 2 0 0 0
25) 0200200
26) 0 2 0 0 0 2 0
27) 0 2 0 0 0 0 2
28) 0 0 2 2 0 0 0
29) 0 0 2 0 2 0 0
30) 0 0 2 0 0 2 0
31) 0 0 2 0 0 0 2
32) 0 0 0 2 2 0 0
33) 0 0 0 2 0 2 0
34) 0 0 0 2 0 0 2
35) 0 0 0 0 2 2 0
36) 0 0 0 0 2 0 2
37) 0 0 0 0 0 2 2
38) 0 2 2 2 2 2 2
39) 2 0 2 2 2 2 2
40) 2 2 0 2 2 2 2
41)2220222

42) 2 2 2 2 0 2 2
43) 2 2 2 2 2 0 2
44) 2222220

Eight factors. 53%
1)11111111
2) 11111110
3) 1 1 1 1 1 1 0
4) 1 1 1 1 1 0 1
5) 1 1 1 1 0 1 1
6) 1 1 1 0 1 1 1
7) 1 1 0 1 1 1 1
8) 1 0 1 1 1 1 1
9)0111111
10) 1 1 1 1 1 1 1
11) 1 1 1 1 1 12
12) 1 1 1 1 1 2 1
13) 1 1 1 1 2 1 1
14) 1 1 1 2 1 1 1
15) 1 1 2 1 1 1 1
16) 1 2 1 1 1 1 1
17) 2 1 1 1 1 1 1
18) 00020002
19) 00020020
20) 00020200
21) 00022000
22) 00200002
23)002 000 2 0
24) 00200200
25) 00202000
26) 02000002
27) 02000020
28) 02000200
29) 02002000
30) 20000002
31)20000020
32) 20000200
33) 20002000
34) 00222222
35) 02022222
36) 02202222
37) 20022222
38) 20202222
39) 22002222
40) 02220000
41)20220000
42) 22020000
43) 22200000
44) 22220022
45) 22220202
46) 22220220
47) 22222002
48) 22222020
49) 22222200

79

50) 00000000
51) 00000222
52) 00002220
53) 0 0 0 1 2 0 2 2
54) 0 0 0 1 2 2 0 2

Nine factors. 46%
1) 1 1 1
2) 1 1 1
3) 1 1 1
4) 1 1 1
5) 1 1 1

6)
7)
8)
9)

10) 0 1
11) 1 1
12)
13)
14)
15)
16)
17)
18)
19)

1 1 1
1 1 1
1 1 0
1 0 1

1
1
1
1

1 1
1 1
1 1 1
1 1 1
1 1
1 1
1 2
2 1

20) 0 0 0
21) 0 0 0
22) 0 0 0
23) 0 0 0
24) 0 0 0
25) 0 0 2
26) 0 0
27) 0 0
28) 0 0
29) 0 0
30) 0
31) 0
32) 0
33) 0
34) 0

2
2
2
2
2

40) 0 0 2
41) 0 2 0
42) 0

2
2
2
2
2

35)
36)
37)
38)
39)

0 0
0 0
0 0
0 0
0 0

43)
44)
45)
46)
47)

2 2
0 0
0 2
2 0
2 2
2 2

2 0 0
2 0 0
2 0 0
2 0 2
2 2 0
0 0 0
0 0 0
0 0 0
0 0 2
0 2 0
0 0 0
0 0 0
0 0 0
0 0 2
0 2 0
0 0 0
0 0 0
0 0 0
0 0
0 2
2 2

2
2
2
2
2

2
0
2
2
2
2
2
2

0 0
0 2

0 0 2
0 2 0
2 0 0
0 0 0
0 0 0
0 0 2
0 2 0
2 0 0
0 0 0
0 0 0
0 0 2
0 2 0
2 0 0
0 0 0
0 0 0
0 0 2
0 2 0
2 0 0
0 0 0
0 0 0

2 2
2
2
2
2
2
2
2

2
2
2
2
2
2
2

48) 2 2 2 2 0 2 2 0 2
49) 2 2 2 2 0 2 2 2 0
50) 2 2 2 2 2 0 0 2 2
51) 2 2 2 2 2 0 2 0 2
52) 2 2 2 2 2 0 2 2 0
53) 2 2 2 2 2 2 0 0 2
54) 2 2 2 2 2 2 0 2 0
55) 2 2 2 2 2 2 2 0 0
56) 2 2 2 2 2 2 2 2 2
57) 0 0 0 0 2 2 2 2 0
58) 0 0 0 0 2 2 0 2 2
59) 0 0 0 0 2 0 2 2 2
60) 0 0 0 0 0 2 2 2 2
61) 0 0 0 0 2 2 2 0 2
62) 2 2 2 0 0 0 0 0 0
63) 2 0 2 2 0 0 0 0 0
64) 2 2 0 2 0 0 0 0 0
65) 0 2 2 2 0 0 0 0 0

Ten factors. 41 %
1) 1 1 111111
2) 1 1 111110
3) 1 1
4) 1 1
5) 1 1
6) 1 1
7) 1 1 0 11111
8) 1 1 0
9) 1 1 0

10) 1 0
11) 0 1
12) 1 1
13) 1 1
14) 1 1
15) 1 1
16) 1 1
17) 1 1
18) 1 1
19) 1 1
20) 1 2
21) 2 1
22) 0 0 0 0 0 0 0 0 0 0
23) 0 0 0 0 2 0 0 0 0 2
24) 0 0 0 0 2 0 0 0 2 0
25) 0 0 0 0 2 0 0 2 0 0
26) 0 0 0 0 2 0 2 0 0 0
27) 0 0 0 0 2 2 0 0 0 0
28) 0 0 0 2 0 0 0 0 0 2
29) 0 0 0 2 0 0 0 0 2 0
30) 0 0 0 2 0 0 0 2 0 0
31) 0 0 0 2 0 0 2 0 0 0
32) 0 0 0 2 0 2 0 0 0 0
33) 0 0 2 0 0 0 0 0 0 2
34) 0 0 2 0 0 0 0 0 2 0

80

35) 0 0 2 0 0 0 0 2 0 0
36) 0 0 2 0 0 0 2 0 0 0
37) 0 0 2 0 0 2 0 0 0 0
38) 0 2 0 0 0 0 0 0 0 2
39) 0 2 0 0 0 0 0 0 2 0
40) 0 2 0 0 0 0 0 2 0 0
41) 0 2 0 0 0 0 2 0 0 0
42) 0 2 0 0 0 2 0 0 0 0
43) 2 0 0 0 0 0 0 0 0 2
44) 2 0 0 0 0 0 0 0 2 0
45) 2 0 0 0 0 0 0 2 0 0
46) 2 0 0 0 0 0 2 0 0 0
47) 2 0 0 0 0 2 0 0 0 0
48) 0 0 2 2 2 2 2 2 2 2
49) 0 2 0 2 2 2 2 2 2 2
50) 0 2 2 0 2 2 2 2 2 2
51) 0 2 2 2 0 2 2 2 2 2
52) 2 0 0 2 2 2 2 2 2 2
53) 2 0 2 0 2 2 2 2 2 2
54) 2 0 2 2 0 2 2 2 2 2
55) 2 2 0 0 2 2 2 2 2 2
56) 2 2 0 2 0 2 2 2 2 2
57) 2 2 2 0 0 2 2 2 2 2
58) 2 2 2 2 2 0 0 2 2 2
59) 2 2 2 2 2 0 2 0 2 2
60) 2 2 2 2 2 0 2 2 0 2
61) 2 2 2 2 2 0 2 2 2 0
62) 2 2 2 2 2 2 0 0 2 2
63) 2 2 2 2 2 2 0 2 0 2
64) 2 2 2 2 2 2 0 2 2 0
65) 2 2 2 2 2 2 2 0 0 2
66) 2 2 2 2 2 2 2 0 2 0
67) 2 2 2 2 2 2 2 2 0 0
68) 0 0 0 0 0 0 2 2 2 2
69) 0 0 0 0 0 2 0 2 2 2
70) 0 0 0 0 0 2 2 0 2 2
71) 0 0 0 0 0 2 2 2 0 2
72) 0 0 0 0 0 2 2 2 2 0
73) 0 2 2 2 2 0 0 0 0 0
74) 2 0 2 2 2 0 0 0 0 0
75) 2 2 0 2 2 0 0 0 0 0
76) 2 2 2 0 2 0 0 0 0 0
77) 2 2 2 2 0 0 0 0 0 0

81

APPENDIX F - EXPERIMENT RESULTS

This appendix gives details of the experiment involving the phone-line simulation discussed
on page 36. The responses are average number of customers served in a day, maximum queue
length, server utilization percentage, and average waiting time. Seven factors are varied in
the experiment.

ORIGINAL DESIGN AND OBSERVATIONS
1) 1 1 1 1 1 1 1 146.18
2) 0 1 1 1 1 1 1 145.19
3) 2 1 1 1 1 1 1 146.53
4) 1 0 1 1 1 1 1 146.80
5) 1 2 1 1 1 1 1 145.60
6) 1 1 0 1 1 1 1 146.16
7) 1 1 2 1 1 1 1 145.95
8 1 1 1 1 0 1 1 1 142.11
9 1 1 1 1 2 1 1 1 146.89

10) 1 1 1 1 0 1 1 146.61
11 1 1 1 1 1 2 1 1 145.39
12 I 1 1 1 1 1 0 1 142.99
13 l 1 1 1 1 1 2 1 149.65
14 l 1 1 1 1 1 1 0 153.60
15 1 1 1 1 1 1 1 2 139.41
16 1 0 0 0 0 0 0 0 148.37
17 1 2 2 0 0 0 0 0 147.32
18) 2 0 2 0 0 0 0 150.94
19 > 0 2 2 0 0 0 0 142.81
20 2 0 0 2 0 0 0 151.87
21, 0 2 0 2 0 0 0 151.31
22, 1 0 0 2 2 0 0 0 150.96
23, 2 0 0 0 2 0 0 147.46
24] 0 2 0 0 2 0 0 135.27
25 0 0 2 0 2 0 0 141.76
26; 0 0 0 2 2 0 0 151.01
27; 2 0 0 0 0 2 0 157.46
28 0 2 0 0 0 2 0 150.06
29; 0 0 2 0 0 2 0 154.20
3o; 0 0 0 2 0 2 0 158.12
3i; 0 0 0 0 2 2 0 148.70
32] 2 0 0 0 0 0 2 136.76
33] 0 2 0 0 0 0 2 131.94
34; 0 0 2 0 0 0 2 135.05
35] 0 0 0 2 0 0 2 136.90
36] 0 0 0 0 2 0 2 131.65
37] 0 0 0 0 0 2 2 141.46
38] 0 2 2 2 2 2 2 141.57
39] 2 0 2 2 2 2 2 142.85
40] 2 2 0 2 2 2 2 142.77
41] 2 2 2 0 2 2 2 136.35
42; 2 2 2 2 0 2 2 142.86
43] 2 2 2 2 2 0 2 136.86
44] 2 2 2 2 2 2 0 157.73

5.34 55.21
4.80 54.78
5.58 55.37
4.94 52.46
5.67 57.14
5.18 53.23
6.35 57.26
7.14 68.26
3.97 45.57
4.50 49.60
6.01 60.65
5.34 56.13
5.34 » 54.46
5.75 57.92
4.72 52.69
5.59 59.53
7.71 66.64
7.64 65.48
6.35 69.42
2.99 40.32
3.29 43.32
5.23 43.24
9.15 73.03
6.79 74.65
6.73 75.70
4.02 49.51
6.85 58.86
5.98 62.99
6.05 61.85
2.82 39.08
6.50 68.52
5.63 54.98
5.38 59.77
5.58 58.57
2.23 36.34
5.94 65.20
4.85 52.98
5.25 50.11
5.73 46.89
4.09 47.10
8.90 75.91
5.60 40.98
6.09 52.32
6.93 55.80

1 .68
1 .40
1 .87
1 .12
2 .21
1 .57
2 .29
4 .94
.61

1 .09
2 .48
1 .71
1 .65
1 .99
1 .42
2 .05
5 .78
3 .62
4 .50
.24
.45
.85

6 85
6 61
5 19

« 61
2. 77
3. 64
2. 67

* 20
4. 16
1. 91
3. 06
2. 24

■ 12
3. 45
1. 47
1. 36
1. 09

• 88
9. 96

• 98
1. 64
2. 13

82

PARAMETER ESTIMATES
mean 144.8671 5.6006 55.9494 2.5133

A 1.0669 .5848 .5123 .4581

Asq -.1155 -.0425 -.0563 -.0250

B -1.1394 .2493 2.2434 .6965

Bsq -.0022 -.0042 -.1470 -.0152

C -.1188 .6654 2.0335 .4311

Csq -.0505 .1491 .0012 .0735

D 2.5898 -1.3193 -11.0515 -2.2849

Dsq -.5689 .0791 .5574 .3560

E -1.3032 .5143 5.2345 .8880

Esq -.0689 -.0209 -.0396 .0259

F 3.1500 .0145 -.8183 .0312

Fsq .0378 .0075 .0187 -.0094

G -6.8271 -.3721 -2.5081 -.2271

Gsq .0995 -.0275 .0211 -.0029

AB .2850 .0980 .1884 .1842

AC .1236 .0500 .0394 -.0311

AD -.7741 -.3535 -.4016 -.4026

AE .5005 .2412 .2943 .2820

AF -.0169 .0116 -.0666 -.0320

AG -.4883 -.1329 -.2288 -.1099

BC .0945 -.0183 .1392 .0277

BD 1.0893 -.0243 -.5379 -.5126

BE -.5436 -.0945 -.1882 .0598

BF .1365 .0484 .0794 .0253

BG .3101 .0589 .0837 .0163

CD -.0645 .4301 -.4135 -.0864

CE .0125 -.1401 .2184 .0294

CF .1051 .0353 -.0624 .1076

CG .0213 .0783 -.0739 .1355

DE 1.1948 -.0586 -.4821 -.6436

DF -.0451 -.0132 .0944 -.0359

DG -.6464 -.0002 .2173 .0799

EF -.0230 -.0384 -.0307 -.0142

EG .4181 -.0179 -.0512 -.0576

FG -.1468 .0549 .0758 .1554

83

APPENDIX G - NETWORK MODEL RESULTS

The technique of staged aggregation was proposed as a candidate for speeding up
large-scale simulation models in which there are very many essentially identical elements,
such as for simulating traffic flow in very large networks. Some work was done on a
network model to attempt to develop the concept. This appendix summarizes the results,
which were essentially all negative. The work was abandoned when it appeared that the
technique was inappropriate for engineering simulations of interest to CECOM.

The model developed is an idealized model that will be referred to as the rumor
model. N2 nodes are connected in a two-dimensional Cartesian grid of side N. At some
epoch an event occurs that causes one of the nodes to contact its four neighbors in a
random order (presumably to tell them about the event). After each node is contacted,
it contacts its neighbors, again in a random order, to pass along the message. The
simulation of this system is constructed to loop through the nodes to see which have
received the message but have not yet contacted all four neighbors, then effect one of
these contacts. The response variables are 1) the number of iterations of the loop before
all nodes have been notified, 2) the number of calls "wasted" in the sense that they are
made to a node that has already received the message, and 3) the number of calls made
out of the grid to phantom neighbors located outside the perimeter of the grid; separate
counts are made in each of the four directions, so this represents four outputs.

Rather than simulating the system by modeling each node, it could also be
simulated by grouping nodes together and modeling the behavior of the group. The
behavior of the group is more complex, but there are fewer groups than there are nodes.
If N = 16, then the system contains 256 nodes. If these are simulated in groups of 4 (a 2
x 2 grid), then only 64 groups must be simulated. Alternatively, they could be simulated
in groups of 16 as a 4 x 4 grid, and the behavior of the 4 x 4 grid could be determined
by simulating 4 groups of 2 x 2 grids.

The principle of staged aggregation works with a sequence of groupings of the
individual elements as described here. If the complexity of the models for the groupings
does not grow at too great a rate, and if the rules for combining the models do not
increase in complexity, then there could be a net saving in simulation effort by doing the
staged aggregation over simulating the elements individually.

Several variants of this basic model were developed. The first set looked at
aggregation of the model into blocks: (1) a 16 x 16 array of nodes was compared with
(2) an 8 x 8 array of blocks of 2 x 2 nodes; (3) a 4 x 4 array of blocks consisting of 2 x 2
sub-blocks of 2 x 2 nodes; and (4) a 2 x 2 array of blocks consisting of 2 x 2 sub-blocks,
which in turn consist of 2 x 2 sub-sub-blocks of 2 x 2 nodes. Delays were introduced to
represent the time taken in identifying which nodes will make and receive the calls,
setting up the calls, and passing on the message.

A second set looked at an alternate stopping rule: the run ended when the
message was received at the opposite corner from which it started. In this case an

84

additional response is how many nodes actually received the message.

A third set replaced the loop structure with an event calendar. When a message
was received at a node, an event was scheduled at the next time step to make calls to
pass on the message. An added feature was the use of a call list; if a call was made to a
node that was already on the list for a given time step, then a busy signal was received
and the call must be repeated later. This variant was combined with the four levels of
aggregation into blocks.

A refinement of the event structure was to add a feature wherein a node would
act as a sink with a certain probability. An output statistic here was the number of nodes
that received the message before it died because no active node would pass it on.

Run times were recorded for these cases. The delay incorporated into the models
has been adjusted so that the runs times for 100 Monte Carlo samples lie in the range 5
to 10 minutes on a 486 processor running at 33 MHz. It has been found that the more
complex indexing schemes of the aggregated models add only a few seconds time penalty.

Results were largely negative; no ways of capitalizing on the variations in model
structure were found. The sole exception is a variant of the 2-D loop model in which the
results of the first stimulation of a block of 4 nodes has been precomputed and is
supplied by a special subroutine. For this case a very modest time saving of only about
10% is seen.

A further variant considers a message started at the center of the grid. As a given
node receives the message, it may serve as a sink by failing to pass the message along
with a given probability structure. The parameters of the problem are set so that the
message dies out before all the nodes of the complete grid receive the message.

If, on the other hand, the message starts at a corner of the grid, say the lower left
corner, then the pattern of message transmittal will be similar to a quarter of the pattern
if the message starts in the center. It will not be the same, however, because messages
may be sent outside the boundaries of the grid to the left and down, but are not received
from those directions. The technique studied attempts to rectify the quarter-plane model
by the addition of a new event type that introduces messages received along the borders.
These represent messages that in the full plane would have been propagated by going
into an adjacent quadrant then being passed back. Initially there is no information on
which to build a model for such reintroduction. The idea used is to estimate the
probability of the occurrence of a reintroduction event from the model with no
reintroduction, then iteratively correct the probabilities until stability is achieved. The
details will now be described as implemented in a test example.

Let the full grid be of size 31x31 nodes. Let the nodes be numbered (x,y),
where x and y can have the integer values -15 to +15. The starting point for the
initial message is (0,0). This simulation model is replicated 100 times. This will be
considered the reference case.

85

The reference case is to be compared with a modified simulation of a 16 x 16
grid, with nodes numbered with the integer values 0 to +15. The starting point is
again (0,0). The objective is to see if the reference case can be duplicated approxi-
mately by a scaled version of the smaller modified case. Consider a node (i,0) on the
lower border of the array in the smaller case. This node will send messages out of the
array to node (i,-l), but cannot receive messages from that node because it is not
modeled in the simulation. The model is instrumented by recording the number of
occurrences in which a node (i,l) sends a message to node (i,0), and the simulation
time of each occurrence. This number of occurrences in 100 samples is used to estimate
the probability that a message should have been received by node (i,0) from the missing
node (i,-l).

The next step is to modify the model to have messages introduced by the
bordering nodes. The probability that a node (i,0) will receive such a message is a new
input, as is a linear expression for the simulation time at which the input would occur.
By the symmetry of the problem, the same expressions are used for introducing messages
from (-l,j) to (0,j). The revised simulation is run to obtain improved estimates of
these probabilities and the expression for simulation time of occurrence. It was found
that the second estimates differed slightly from the initial ones, but that further iterations
were stable. That is, the third run, using the second estimate of probabilities and time of
occurrence, gives a revised estimate that does not differ significantly from the second
estimate.

The models were rigged with artificial time delays representing computation that
would occur in a real model of a communication system. The time taken by the
reference case was 1423.0 seconds on the 486 PC. The time taken by one run of the
smaller case was 406.3 seconds. Depending on assumptions made about the effort
required to establish the parameters for the smaller model, there may or may not be a
time saving.

86

REFERENCES

Abramowitz, M. and I. Stegun [1964]. Handbook of mathematical functions. US Department
of Commerce, National Bureau of Standards, Applied Mathematics series 55.

Army, Department of [1986]. JANUS (T) documentation. US Army TRADOC Analysis
Center.

Bratley, Paul, Bennett L. Fox, and Linus E. Schräge [1983]. A guide to simulation. Springer-
Verlag.

ECAC [1983]. The terrain integrated rough earth model (TIREM) technical note.
Electromagnetic Compatibility Analysis Center technical note ECAC-TN-83-002.

Joint Staff [1992]. Catalog of wargaming and military simulation models, 12th edition.
Force Structure, Resource, and Assessment Directorate (J-8), The Joint Staff, Washington,
DC. DTIC AD-A246 431.

Knuth, Donald E. [1969]. The art of computer programming: Volume 2 - Seminumerical
algorithms. Addison-Wesley.

Kruger, Anton [1990]. Efficient Fortran programming. Wiley.

Marsaglia, George [1985]. A current view of random number generators. Computer science
and statistics: The interface, L. Billard, ed. Elsevier Science Publishers.

Mood, Alexander M. [1950]. Introduction to the theory of statistics. McGraw-Hill.

Ritchie, Adelia E., ed [1992]. Simulation validation workshop proceedings. Military
Operations Research Society. DTIC AD-A276 941.

Sauerborn, Geoffrey C. [1995]. Distributed interactive simulation (DIS) protocol data units
(PDUs) implemented into a combat model. Army Research Laboratory ARL-MR-227.

Schuppe, Thomas F. [1991]. Modeling and simulation: a Department of Defense critical
technology. Proc 1991 winter simulation conference, pp 519-524.

Webb, Steve et al [1987]. Analyst manual for the Osprey ASAT system effectiveness model.
Teledyne Brown Engineering Report MK11-87-AFOTEC-70.

Wray, John W. [1997]. Validation of CECOM's System Performance Model. Unpublished
briefing charts dated September 17.

87

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

1. AGENCY USE ONLY 2. REPORT DATE
31 Oct 97

3. REPORT TYPE AND DATES COVERED
Final Report 16 Dec 96 - 30 Sep 97

4. TITLE AND SUBTITLE

MODELING AND SIMULATION TECHNIQUES FOR
LARGE-SCALE COMMUNICATIONS MODELING

6. AUTHOR(S)

Steve Webb

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Steve Webb
809 Grayling Bay
Costa Mesa, CA 92626

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
US Army CECOM
Fort Monmouth, NJ 07703-5008

5.FUNDING NUMBERS

C: DAAB07-97-C-D256

8. PERFORMING ORGANIZATION
REPORT NUMBER

SW-97-11

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release. Distribution unlimited.

13. ABSTRACT (Maximum 200 words)

12b. DISTRIBUTION CODE

Because modeling and simulation are so widely used throughout the Army, vast amounts of computer
time are used. Of more concern, however, is the quantity of analyst time involved in setting up and analyzing
the results of these runs. Increased confidence in the models may be expected to lead to more efficient use of
the analyst's time. To this end, an ongoing validation effort for a CECOM model was supported by providing
computer routines that measure the degree to which simulation data match test data. Tests of random
number generators were also developed and applied to CECOM models. It was found that synchronization of
random number strings in simulations is easy to implement and can provide significant savings for making
comparative studies. If synchronization is in place, then statistical experiment design can be used to provide
information on the sensitivity of the output to input parameters. The report concludes with recommendations
and an implementation plan.

14. SUBJECT TERMS

Communications modeling; Simulation validation; Random number generators;
Random number testing; Random number synchronization;
Statistical experiment design; Modeling and simulation

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES
87 + iv

16. PRICE CODE

20. LIMITATION OF ABSTRACT

Standard Form 298

